Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
67de0eae
Commit
67de0eae
authored
Jun 23, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
特征工程优化
parent
fcfb12fe
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
66 additions
and
28 deletions
+66
-28
featureEng.py
spark/featureEng.py
+66
-28
No files found.
spark/featureEng.py
View file @
67de0eae
...
@@ -66,12 +66,16 @@ TRAIN_FILE_PATH = "service_feature_" + VERSION
...
@@ -66,12 +66,16 @@ TRAIN_FILE_PATH = "service_feature_" + VERSION
ITEM_PREFIX
=
"item_"
ITEM_PREFIX
=
"item_"
def
addItemFeatures
(
samples
,
itemDF
):
def
addItemFeatures
(
samples
,
itemDF
,
dataVocab
,
multiVocab
):
itemDF
=
itemDF
.
withColumnRenamed
(
"id"
,
"itemid"
)
itemDF
=
itemDF
.
withColumnRenamed
(
"id"
,
"itemid"
)
# 数据过滤:无医生
# 数据过滤:无医生
itemDF
=
itemDF
.
filter
(
col
(
"doctor_id"
)
!=
"-1"
)
itemDF
=
itemDF
.
filter
(
col
(
"doctor_id"
)
!=
"-1"
)
# itemid
vocabList
=
collectColumnToVocab
(
itemDF
,
"itemid"
)
dataVocab
[
"itemid"
]
=
vocabList
# null处理
# null处理
for
c
in
ITEM_NUMBER_COLUMNS
:
for
c
in
ITEM_NUMBER_COLUMNS
:
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
...
@@ -80,16 +84,24 @@ def addItemFeatures(samples,itemDF):
...
@@ -80,16 +84,24 @@ def addItemFeatures(samples,itemDF):
for
c
in
ITEM_CATE_COLUMNS
:
for
c
in
ITEM_CATE_COLUMNS
:
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
ITEM_PREFIX
+
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
.
drop
(
c
)
itemDF
=
itemDF
.
withColumn
(
ITEM_PREFIX
+
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
.
drop
(
c
)
# 字典添加
dataVocab
[
ITEM_PREFIX
+
c
]
=
collectColumnToVocab
(
itemDF
,
ITEM_PREFIX
+
c
)
# 离散特征处理
# 离散特征处理
for
c
,
v
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
items
():
for
c
,
v
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
items
():
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
itemDF
=
itemDF
.
withColumn
(
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
multiVocab
[
c
]
=
collectMutiColumnToVocab
(
itemDF
,
c
)
itemDF
=
itemDF
.
drop
(
c
)
for
i
in
range
(
1
,
v
+
1
):
for
i
in
range
(
1
,
v
+
1
):
new_c
=
ITEM_PREFIX
+
c
+
"__"
+
str
(
i
)
new_c
=
ITEM_PREFIX
+
c
+
"__"
+
str
(
i
)
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
split
(
F
.
col
(
c
),
","
)[
i
-
1
])
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
split
(
F
.
col
(
c
),
","
)[
i
-
1
])
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
when
(
F
.
col
(
new_c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
new_c
)))
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
when
(
F
.
col
(
new_c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
new_c
)))
dataVocab
[
new_c
]
=
multiVocab
[
c
]
samples
=
samples
.
join
(
itemDF
,
on
=
[
'itemid'
],
how
=
'inner'
)
samples
=
samples
.
join
(
itemDF
,
on
=
[
'itemid'
],
how
=
'inner'
)
# 统计特征处理
# 统计特征处理
print
(
"统计特征处理..."
)
print
(
"统计特征处理..."
)
...
@@ -121,6 +133,9 @@ def addItemFeatures(samples,itemDF):
...
@@ -121,6 +133,9 @@ def addItemFeatures(samples,itemDF):
for
c
in
bucketColumns
:
for
c
in
bucketColumns
:
samples
=
samples
.
withColumn
(
c
+
"Bucket"
,
F
.
col
(
c
+
"Bucket"
)
.
cast
(
"string"
))
samples
=
samples
.
withColumn
(
c
+
"Bucket"
,
F
.
col
(
c
+
"Bucket"
)
.
cast
(
"string"
))
dataVocab
[
c
+
"Bucket"
]
=
[
str
(
float
(
i
))
for
i
in
range
(
11
)]
samples
.
printSchema
()
samples
.
printSchema
()
# samples.show(5, truncate=False)
# samples.show(5, truncate=False)
...
@@ -139,7 +154,9 @@ def arrayReverse(arr):
...
@@ -139,7 +154,9 @@ def arrayReverse(arr):
arr
.
reverse
()
arr
.
reverse
()
return
arr
return
arr
def
addUserFeatures
(
samples
):
def
addUserFeatures
(
samples
,
dataVocab
,
multiVocab
):
dataVocab
[
"userid"
]
=
collectColumnToVocab
(
samples
,
"userid"
)
extractTagsUdf
=
F
.
udf
(
extractTags
,
ArrayType
(
StringType
()))
extractTagsUdf
=
F
.
udf
(
extractTags
,
ArrayType
(
StringType
()))
arrayReverseUdf
=
F
.
udf
(
arrayReverse
,
ArrayType
(
StringType
()))
arrayReverseUdf
=
F
.
udf
(
arrayReverse
,
ArrayType
(
StringType
()))
samples
=
samples
.
withColumnRenamed
(
"cl_id"
,
"userid"
)
samples
=
samples
.
withColumnRenamed
(
"cl_id"
,
"userid"
)
...
@@ -150,6 +167,7 @@ def addUserFeatures(samples):
...
@@ -150,6 +167,7 @@ def addUserFeatures(samples):
.
withColumn
(
"userPositiveHistory"
,
arrayReverseUdf
(
F
.
col
(
"userPositiveHistory"
)))
.
withColumn
(
"userPositiveHistory"
,
arrayReverseUdf
(
F
.
col
(
"userPositiveHistory"
)))
for
i
in
range
(
1
,
11
):
for
i
in
range
(
1
,
11
):
samples
=
samples
.
withColumn
(
"userRatedHistory"
+
str
(
i
),
F
.
when
(
F
.
col
(
"userPositiveHistory"
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
"userPositiveHistory"
)[
i
-
1
])
.
otherwise
(
"-1"
))
samples
=
samples
.
withColumn
(
"userRatedHistory"
+
str
(
i
),
F
.
when
(
F
.
col
(
"userPositiveHistory"
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
"userPositiveHistory"
)[
i
-
1
])
.
otherwise
(
"-1"
))
# dataVocab["userRatedHistory"+str(i)] = dataVocab["itemid"]
samples
=
samples
.
drop
(
"userPositiveHistory"
)
samples
=
samples
.
drop
(
"userPositiveHistory"
)
# user历史点击分值统计
# user历史点击分值统计
...
@@ -166,6 +184,9 @@ def addUserFeatures(samples):
...
@@ -166,6 +184,9 @@ def addUserFeatures(samples):
samples
=
samples
.
withColumn
(
new_col
,
extractTagsUdf
(
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
c
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
))))
samples
=
samples
.
withColumn
(
new_col
,
extractTagsUdf
(
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
c
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
))))
for
i
in
range
(
1
,
v
+
1
):
for
i
in
range
(
1
,
v
+
1
):
samples
=
samples
.
withColumn
(
new_col
+
"__"
+
str
(
i
),
F
.
when
(
F
.
col
(
new_col
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
new_col
)[
i
-
1
])
.
otherwise
(
"-1"
))
samples
=
samples
.
withColumn
(
new_col
+
"__"
+
str
(
i
),
F
.
when
(
F
.
col
(
new_col
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
new_col
)[
i
-
1
])
.
otherwise
(
"-1"
))
dataVocab
[
new_col
+
"__"
+
str
(
i
)]
=
multiVocab
[
c
]
samples
=
samples
.
drop
(
new_col
)
samples
=
samples
.
drop
(
new_col
)
# .drop(c).drop(new_col)
# .drop(c).drop(new_col)
...
@@ -185,7 +206,9 @@ def addUserFeatures(samples):
...
@@ -185,7 +206,9 @@ def addUserFeatures(samples):
samples
=
featurePipeline
.
fit
(
samples
)
.
transform
(
samples
)
samples
=
featurePipeline
.
fit
(
samples
)
.
transform
(
samples
)
# 转string
# 转string
for
c
in
bucketColumns
:
for
c
in
bucketColumns
:
samples
=
samples
.
withColumn
(
c
+
"Bucket"
,
F
.
col
(
c
+
"Bucket"
)
.
cast
(
"string"
))
samples
=
samples
.
withColumn
(
c
+
"Bucket"
,
F
.
col
(
c
+
"Bucket"
)
.
cast
(
"string"
))
.
drop
(
c
)
dataVocab
[
c
+
"Bucket"
]
=
[
str
(
float
(
i
))
for
i
in
range
(
11
)]
samples
.
printSchema
()
samples
.
printSchema
()
# samples.show(5,truncate=False)
# samples.show(5,truncate=False)
...
@@ -224,6 +247,25 @@ def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path
...
@@ -224,6 +247,25 @@ def splitAndSaveTrainingTestSamplesByTimeStamp(samples,splitTimestamp, file_path
train
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
trainingSavePath
)
train
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
trainingSavePath
)
test
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
testSavePath
)
test
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
testSavePath
)
def
collectColumnToVocab
(
samples
,
column
):
datas
=
samples
.
select
(
column
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
for
d
in
datas
:
if
d
[
column
]:
vocabSet
.
add
(
str
(
d
[
column
]))
vocabSet
.
add
(
"-1"
)
# 空值的默认
return
list
(
vocabSet
)
def
collectMutiColumnToVocab
(
samples
,
column
):
datas
=
samples
.
select
(
column
)
.
distinct
()
.
collect
()
tagSet
=
set
()
for
d
in
datas
:
if
d
[
column
]:
for
tag
in
d
[
column
]
.
split
(
","
):
tagSet
.
add
(
tag
)
tagSet
.
add
(
"-1"
)
# 空值默认
return
list
(
tagSet
)
def
getDataVocab
(
samples
,
model_columns
):
def
getDataVocab
(
samples
,
model_columns
):
dataVocab
=
{}
dataVocab
=
{}
...
@@ -232,28 +274,13 @@ def getDataVocab(samples,model_columns):
...
@@ -232,28 +274,13 @@ def getDataVocab(samples,model_columns):
# 多值特征
# 多值特征
for
c
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
keys
():
for
c
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
keys
():
print
(
c
)
print
(
c
)
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
multiVocab
[
c
]
=
collectMutiColumnToVocab
(
samples
,
c
)
tagSet
=
set
()
for
d
in
datas
:
if
d
[
c
]:
for
tag
in
d
[
c
]
.
split
(
","
):
tagSet
.
add
(
tag
)
tagSet
.
add
(
"-1"
)
#空值默认
multiVocab
[
c
]
=
list
(
tagSet
)
samples
=
samples
.
drop
(
c
)
samples
=
samples
.
drop
(
c
)
# id类特征 和 类别特征
# id类特征 和 类别特征
for
c
in
[
"userid"
,
"itemid"
]
+
[
ITEM_PREFIX
+
c
for
c
in
ITEM_CATE_COLUMNS
]:
for
c
in
[
"userid"
]:
print
(
c
)
print
(
c
)
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
dataVocab
[
c
]
=
collectColumnToVocab
(
samples
,
c
)
vocabSet
=
set
()
for
d
in
datas
:
if
d
[
c
]:
vocabSet
.
add
(
str
(
d
[
c
]))
vocabSet
.
add
(
"-1"
)
# 空值的默认
dataVocab
[
c
]
=
list
(
vocabSet
)
pass
for
c
in
model_columns
:
for
c
in
model_columns
:
# 判断是否以Bucket结尾
# 判断是否以Bucket结尾
...
@@ -758,14 +785,20 @@ if __name__ == '__main__':
...
@@ -758,14 +785,20 @@ if __name__ == '__main__':
print
(
"添加label..."
)
print
(
"添加label..."
)
ratingSamplesWithLabel
=
addSampleLabel
(
ratingDF
)
ratingSamplesWithLabel
=
addSampleLabel
(
ratingDF
)
# 数据字典
dataVocab
=
{}
multiVocab
=
{}
print
(
"处理item特征..."
)
print
(
"处理item特征..."
)
timestmp1
=
int
(
round
(
time
.
time
()))
timestmp1
=
int
(
round
(
time
.
time
()))
samplesWithItemFeatures
=
addItemFeatures
(
ratingSamplesWithLabel
,
itemDF
)
samplesWithItemFeatures
=
addItemFeatures
(
ratingSamplesWithLabel
,
itemDF
,
dataVocab
,
multiVocab
)
timestmp2
=
int
(
round
(
time
.
time
()))
timestmp2
=
int
(
round
(
time
.
time
()))
print
(
"处理item特征, 耗时s:{}"
.
format
(
timestmp2
-
timestmp1
))
print
(
"处理item特征, 耗时s:{}"
.
format
(
timestmp2
-
timestmp1
))
print
(
"multiVocab:"
)
print
(
multiVocab
.
keys
())
print
(
"处理user特征..."
)
print
(
"处理user特征..."
)
samplesWithUserFeatures
=
addUserFeatures
(
samplesWithItemFeatures
)
samplesWithUserFeatures
=
addUserFeatures
(
samplesWithItemFeatures
,
dataVocab
,
multiVocab
)
timestmp3
=
int
(
round
(
time
.
time
()))
timestmp3
=
int
(
round
(
time
.
time
()))
print
(
"处理user特征, 耗时s:{}"
.
format
(
timestmp3
-
timestmp2
))
print
(
"处理user特征, 耗时s:{}"
.
format
(
timestmp3
-
timestmp2
))
...
@@ -787,6 +820,7 @@ if __name__ == '__main__':
...
@@ -787,6 +820,7 @@ if __name__ == '__main__':
print
(
"user feature to redis 耗时s:{}"
.
format
(
timestmp5
-
timestmp4
))
print
(
"user feature to redis 耗时s:{}"
.
format
(
timestmp5
-
timestmp4
))
# item特征数据存入redis
# item特征数据存入redis
# todo 添加最近一个月有行为的item,待优化:扩大item范围
# featuresToRedis(samplesWithUserFeatures, item_columns, "item", FEATURE_ITEM_KEY)
# featuresToRedis(samplesWithUserFeatures, item_columns, "item", FEATURE_ITEM_KEY)
itemDatas
=
collectFeaturesToDict
(
samplesWithUserFeatures
,
item_columns
,
"item"
)
itemDatas
=
collectFeaturesToDict
(
samplesWithUserFeatures
,
item_columns
,
"item"
)
print
(
"item feature to collect 耗时s:{}"
.
format
(
int
(
round
(
time
.
time
()))
-
timestmp5
))
print
(
"item feature to collect 耗时s:{}"
.
format
(
int
(
round
(
time
.
time
()))
-
timestmp5
))
...
@@ -810,15 +844,18 @@ if __name__ == '__main__':
...
@@ -810,15 +844,18 @@ if __name__ == '__main__':
print
(
"数据写入hdfs 耗时s:{}"
.
format
(
timestmp7
-
timestmp6
))
print
(
"数据写入hdfs 耗时s:{}"
.
format
(
timestmp7
-
timestmp6
))
# 离散数据字典生成
# 离散数据字典生成
print
(
"数据字典生成..."
)
#
print("数据字典生成...")
dataVocab
=
getDataVocab
(
samplesWithUserFeatures
,
model_columns
)
# dataVocab = getDataVocab(samplesWithUserFeatures,model_columns,dataVocab
)
timestmp8
=
int
(
round
(
time
.
time
()))
#
timestmp8 = int(round(time.time()))
print
(
"数据字典生成 耗时s:{}"
.
format
(
timestmp8
-
timestmp7
))
#
print("数据字典生成 耗时s:{}".format(timestmp8 - timestmp7))
# 字典转为json 存入redis
# 字典转为json 存入redis
print
(
"数据字典存入redis..."
)
print
(
"数据字典存入redis..."
)
print
(
"dataVocab:"
)
print
(
dataVocab
.
keys
())
dataVocabStr
=
json
.
dumps
(
dataVocab
,
ensure_ascii
=
False
)
dataVocabStr
=
json
.
dumps
(
dataVocab
,
ensure_ascii
=
False
)
dataVocabToRedis
(
dataVocabStr
)
dataVocabToRedis
(
dataVocabStr
)
timestmp9
=
int
(
round
(
time
.
time
()))
timestmp9
=
int
(
round
(
time
.
time
()))
print
(
"总耗时s:{}"
.
format
(
timestmp9
-
timestmp
8
))
print
(
"总耗时s:{}"
.
format
(
timestmp9
-
timestmp
7
))
spark
.
stop
()
spark
.
stop
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment