Commit 7b260f45 authored by 宋柯's avatar 宋柯

模型上线

parent 92c6b848
...@@ -236,7 +236,11 @@ early_stopping = tf.estimator.experimental.stop_if_no_increase_hook(wideAndDeepM ...@@ -236,7 +236,11 @@ early_stopping = tf.estimator.experimental.stop_if_no_increase_hook(wideAndDeepM
hooks = [early_stopping] hooks = [early_stopping]
train_spec = tf.estimator.TrainSpec(input_fn = lambda: input_fn(DATA_DIR + 'train_samples.csv', 1, True, 2048), hooks = hooks) train_dataset = input_fn(DATA_DIR + 'train_samples.csv', 1, True, 2048)
eval_dataset = input_fn(DATA_DIR + 'eval_samples.csv', 1, False, 2 ** 15)
train_spec = tf.estimator.TrainSpec(input_fn = lambda: train_dataset, hooks = hooks)
serving_feature_spec = tf.feature_column.make_parse_example_spec( serving_feature_spec = tf.feature_column.make_parse_example_spec(
linear_feature_columns + dnn_feature_columns) linear_feature_columns + dnn_feature_columns)
...@@ -250,7 +254,7 @@ exporter = tf.estimator.BestExporter( ...@@ -250,7 +254,7 @@ exporter = tf.estimator.BestExporter(
serving_input_receiver_fn = serving_input_receiver_fn, serving_input_receiver_fn = serving_input_receiver_fn,
exports_to_keep = 1) exports_to_keep = 1)
eval_spec = tf.estimator.EvalSpec(input_fn = lambda: input_fn(DATA_DIR + 'eval_samples.csv', 1, False, 2 ** 15), steps = None, throttle_secs = 120, exporters = exporter) eval_spec = tf.estimator.EvalSpec(input_fn = lambda: eval_dataset, steps = None, throttle_secs = 120, exporters = exporter)
# def my_auc(labels, predictions): # def my_auc(labels, predictions):
# return {'auc_pr_careful_interpolation': tf.metrics.auc(labels, predictions['logistic'], curve='ROC', # return {'auc_pr_careful_interpolation': tf.metrics.auc(labels, predictions['logistic'], curve='ROC',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment