Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
8ff8d21d
Commit
8ff8d21d
authored
Dec 30, 2021
by
宋柯
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
模型上线
parent
e0f282db
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
149 additions
and
0 deletions
+149
-0
featureEngSk.py
spark/featureEngSk.py
+149
-0
No files found.
spark/featureEngSk.py
View file @
8ff8d21d
...
...
@@ -146,6 +146,49 @@ def getItemStaticFeatures(itemStatisticDays, startDay, endDay):
return
clickStaticFeatures
,
expStaticFeatures
def
getPredictItemStaticFeatures
(
itemStatisticDays
):
itemStatisticStartDay
=
addDays
(
-
itemStatisticDays
)
endDay
=
addDays
(
-
1
)
itemStatisticSql
=
getPredictItemStatisticSql
(
itemStatisticStartDay
,
endDay
)
itemStatisticDF
=
spark
.
sql
(
itemStatisticSql
)
# itemStatisticDF.show(100, False)
itemStatisticDF
.
createOrReplaceTempView
(
"predictItemStatisticDF"
)
itemStatisticSql
=
"""
SELECT
card_id,
label,
COALESCE(SUM(label_count), 0) label_count_sum,
COALESCE(AVG(label_count), 0) label_count_avg,
COALESCE(STDDEV_POP(label_count), 0) label_count_stddev
FROM
predictItemStatisticDF
GROUP BY
card_id, label
"""
print
(
"predictItemStatisticSql: {}"
.
format
(
itemStatisticSql
))
staticFeatures
=
spark
.
sql
(
itemStatisticSql
)
clickStaticFeatures
=
staticFeatures
.
where
(
F
.
col
(
'label'
)
==
F
.
lit
(
1
))
\
.
withColumnRenamed
(
'label_count_sum'
,
ITEM_PREFIX
+
NUMERIC_PREFIX
+
'click_count_sum'
)
\
.
withColumnRenamed
(
'label_count_avg'
,
ITEM_PREFIX
+
NUMERIC_PREFIX
+
'click_count_avg'
)
\
.
withColumnRenamed
(
'label_count_stddev'
,
ITEM_PREFIX
+
NUMERIC_PREFIX
+
'click_count_stddev'
)
expStaticFeatures
=
staticFeatures
.
where
(
F
.
col
(
'label'
)
==
F
.
lit
(
0
))
\
.
withColumnRenamed
(
'label_count_sum'
,
ITEM_PREFIX
+
NUMERIC_PREFIX
+
'exp_count_sum'
)
\
.
withColumnRenamed
(
'label_count_avg'
,
ITEM_PREFIX
+
NUMERIC_PREFIX
+
'exp_count_avg'
)
\
.
withColumnRenamed
(
'label_count_stddev'
,
ITEM_PREFIX
+
NUMERIC_PREFIX
+
'exp_count_stddev'
)
drop_columns
=
[
'label'
]
clickStaticFeatures
=
clickStaticFeatures
.
drop
(
*
drop_columns
)
# clickStaticFeatures.show(20, truncate = False)
expStaticFeatures
=
expStaticFeatures
.
drop
(
*
drop_columns
)
# expStaticFeatures.show(20, truncate = False)
return
clickStaticFeatures
,
expStaticFeatures
# ratingDF, itemEsFeatureDF, startDay, endDay
def
itemStatisticFeaturesProcess
(
samples_iEsF_iStatisticF
):
...
...
@@ -716,6 +759,106 @@ def getItemStatisticSql(start, end):
print
(
sql
)
return
sql
def
getPredictItemStatisticSql
(
start
,
end
):
sql
=
"""
SELECT TT.card_id, TT.label, count(1) as label_count
FROM
(
SELECT T.partition_date, T.card_id, T.label
FROM
(
SELECT t1.card_id, 1 as label
FROM
(
select cl_id, business_id as card_id
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<='{endDay}'
AND page_name='welfare_detail'
AND page_stay >= 2
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
group by partition_date, city_id, cl_id, business_id, cl_type
) AS t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
UNION
SELECT t1.card_id, 0 as label
from
( --新首页卡片曝光
SELECT cl_id, card_id
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<='{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and is_exposure='1'
--and page_name='home'
--and tab_name='精选'
--and page_name in ('home','search_result_more')
--and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品'))
and card_type in ('card','video')
and card_content_type in ('service')
and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill')
group by partition_date, city_id, cl_type, cl_id, card_id, app_session_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
) T
) TT
GROUP BY TT.card_id, TT.label
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
connectDoris
(
spark
,
table
):
return
spark
.
read
\
.
format
(
"jdbc"
)
\
...
...
@@ -945,6 +1088,12 @@ if __name__ == '__main__':
#计算 item 统计特征
clickStaticFeatures
,
expStaticFeatures
=
getItemStaticFeatures
(
itemStatisticStartDays
+
trainDays
+
1
,
startDay
,
endDay
)
#计算线上推理 item 统计特征
predictClickStaticFeatures
,
predictExpStaticFeatures
=
getPredictItemStaticFeatures
(
itemStatisticStartDays
)
predictClickStaticFeatures
.
show
(
100
,
False
)
predictExpStaticFeatures
.
show
(
100
,
False
)
#user Profile Feature
userProfileFeatureDF
=
getUserProfileFeature
(
spark
,
addDays
(
-
trainDays
-
1
,
format
=
"
%
Y-
%
m-
%
d"
),
addDays
(
-
1
,
format
=
"
%
Y-
%
m-
%
d"
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment