Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
d60b9499
Commit
d60b9499
authored
May 27, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
美购精排模型
parent
d468d022
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
33 additions
and
17 deletions
+33
-17
train.py
mlp/train.py
+33
-17
No files found.
mlp/train.py
View file @
d60b9499
...
...
@@ -70,28 +70,30 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
return
dataSet
def
getTrainColumns
(
train_columns
,
data_vocab
):
columns
=
[]
deep_columns
=
[]
wide_columns
=
[]
dataColumns
=
[]
inputs
=
{}
# 离散特征
for
feature
in
train_columns
:
if
data_vocab
.
get
(
feature
):
if
feature
.
count
(
"__"
)
>
0
or
feature
.
count
(
"Bucket"
)
>
0
:
if
feature
.
count
(
"__"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
columns
.
append
(
col
)
deep_
columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
one_hot_columns
:
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
indicator_column
(
cat_col
)
columns
.
append
(
col
)
# col = tf.feature_column.indicator_column(cat_col)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
wide_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
else
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
columns
.
append
(
col
)
deep_
columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
# if feature.startswith("userRatedHistory") or feature.count("__") > 0 or feature in embedding_columns:
...
...
@@ -111,21 +113,35 @@ def getTrainColumns(train_columns,data_vocab):
elif
feature
in
ITEM_NUMBER_COLUMNS
:
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
columns
.
append
(
col
)
wide_
columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
columns
,
dataColumns
,
inputs
return
deep_columns
,
wide_
columns
,
dataColumns
,
inputs
def
train
(
columns
,
inputs
,
train_dataset
):
deep
=
tf
.
keras
.
layers
.
DenseFeatures
(
columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
def
train
(
deep_columns
,
wide_
columns
,
inputs
,
train_dataset
):
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
deep_columns
+
wide_
columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
Features
(
deep_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
output_layer
=
tf
.
keras
.
layers
.
Dense
(
1
,
activation
=
'sigmoid'
)(
deep
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
# deep = tf.keras.layers.Dense(64, activation='relu')(deep)
# deep = tf.keras.layers.Dropout(0.5)(deep)
output_layer
=
tf
.
keras
.
layers
.
Dense
(
1
,
activation
=
'sigmoid'
)(
concat_layer
)
# output_layer = FM(1)(deep)
# deep = tf.keras.layers.DenseFeatures(columns)(inputs)
# deep = tf.keras.layers.Dense(64, activation='relu')(deep)
# deep = tf.keras.layers.Dropout(0.2)(deep)
# deep = tf.keras.layers.Dense(64, activation='relu')(deep)
# deep = tf.keras.layers.Dropout(0.2)(deep)
# output_layer = tf.keras.layers.Dense(1, activation='sigmoid')(deep)
model
=
tf
.
keras
.
Model
(
inputs
,
output_layer
)
# compile the model, set loss function, optimizer and evaluation metrics
...
...
@@ -135,7 +151,7 @@ def train(columns,inputs,train_dataset):
metrics
=
[
'accuracy'
,
tf
.
keras
.
metrics
.
AUC
(
curve
=
'ROC'
),
tf
.
keras
.
metrics
.
AUC
(
curve
=
'PR'
)])
# train the model
model
.
fit
(
train_dataset
,
epochs
=
5
)
model
.
fit
(
train_dataset
,
epochs
=
10
)
print
(
"train save..."
)
model
.
save
(
model_file
,
include_optimizer
=
False
,
save_format
=
'tf'
)
...
...
@@ -183,7 +199,7 @@ if __name__ == '__main__':
# 获取训练列
columns
=
df_train
.
columns
.
tolist
()
trainC
olumns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
deep_columns
,
wide_c
olumns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_test
=
df_test
[
datasColumns
+
[
"label"
]]
...
...
@@ -203,7 +219,7 @@ if __name__ == '__main__':
print
(
"train start..."
)
timestmp3
=
int
(
round
(
time
.
time
()))
model
=
train
(
trainC
olumns
,
inputs
,
train_data
)
model
=
train
(
deep_columns
,
wide_c
olumns
,
inputs
,
train_data
)
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment