Commit e0f282db authored by 宋柯's avatar 宋柯

模型上线

parent b0453945
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
tf.disable_eager_execution()
tf.logging.set_verbosity(tf.logging.INFO) tf.logging.set_verbosity(tf.logging.INFO)
import sys import sys
import time import time
...@@ -220,8 +219,7 @@ session_config = tf.compat.v1.ConfigProto(allow_soft_placement = True) ...@@ -220,8 +219,7 @@ session_config = tf.compat.v1.ConfigProto(allow_soft_placement = True)
session_config.gpu_options.allow_growth = True session_config.gpu_options.allow_growth = True
# config = tf.estimator.RunConfig(save_checkpoints_steps = 3000, train_distribute = distribution, eval_distribute = distribution) config = tf.estimator.RunConfig(save_checkpoints_steps = 3000, train_distribute = distribution, eval_distribute = distribution)
config = tf.estimator.RunConfig(save_checkpoints_steps = 300, train_distribute = distribution, eval_distribute = distribution)
# config = tf.estimator.RunConfig(save_checkpoints_steps = 3000, session_config = session_config) # config = tf.estimator.RunConfig(save_checkpoints_steps = 3000, session_config = session_config)
...@@ -238,17 +236,7 @@ early_stopping = tf.estimator.experimental.stop_if_no_increase_hook(wideAndDeepM ...@@ -238,17 +236,7 @@ early_stopping = tf.estimator.experimental.stop_if_no_increase_hook(wideAndDeepM
hooks = [early_stopping] hooks = [early_stopping]
train_dataset = input_fn(DATA_DIR + 'train_samples.csv', 1, True, 2048) train_spec = tf.estimator.TrainSpec(input_fn = lambda: input_fn(DATA_DIR + 'train_samples.csv', 3, True, 2048), hooks = hooks)
eval_dataset = input_fn(DATA_DIR + 'eval_samples.csv', 1, False, 2 ** 15)
def train_dataset_input_fn(train_dataset):
return train_dataset
def eval_dataset_input_fn(eval_dataset):
return eval_dataset
train_spec = tf.estimator.TrainSpec(input_fn = lambda: input_fn(DATA_DIR + 'train_samples.csv', 1, True, 2048), hooks = hooks)
serving_feature_spec = tf.feature_column.make_parse_example_spec( serving_feature_spec = tf.feature_column.make_parse_example_spec(
linear_feature_columns + dnn_feature_columns) linear_feature_columns + dnn_feature_columns)
...@@ -262,7 +250,7 @@ exporter = tf.estimator.BestExporter( ...@@ -262,7 +250,7 @@ exporter = tf.estimator.BestExporter(
serving_input_receiver_fn = serving_input_receiver_fn, serving_input_receiver_fn = serving_input_receiver_fn,
exports_to_keep = 1) exports_to_keep = 1)
eval_spec = tf.estimator.EvalSpec(input_fn = lambda: eval_dataset_input_fn(eval_dataset), steps = None, throttle_secs = 120, exporters = exporter) eval_spec = tf.estimator.EvalSpec(input_fn = lambda: input_fn(DATA_DIR + 'eval_samples.csv', 1, False, 2 ** 15), steps = None, throttle_secs = 120, exporters = exporter)
# def my_auc(labels, predictions): # def my_auc(labels, predictions):
# return {'auc_pr_careful_interpolation': tf.metrics.auc(labels, predictions['logistic'], curve='ROC', # return {'auc_pr_careful_interpolation': tf.metrics.auc(labels, predictions['logistic'], curve='ROC',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment