Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
e350d105
Commit
e350d105
authored
Dec 31, 2021
by
宋柯
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
模型上线
parent
33149f28
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
35 additions
and
38 deletions
+35
-38
featureEngSk.py
spark/featureEngSk.py
+35
-38
No files found.
spark/featureEngSk.py
View file @
e350d105
...
...
@@ -588,7 +588,18 @@ def getClickSql(start, end):
group by partition_date, city_id, cl_id, business_id, cl_type
) AS t1
join
( --渠道,新老
device_filter_df t2
on t1.cl_id = t2.device_id
LEFT JOIN
black_device_df t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
get_device_filter
(
spark
,
start
,
end
):
sql
=
"""
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
...
...
@@ -601,20 +612,25 @@ def getClickSql(start, end):
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
df
=
spark
.
sql
(
sql
)
df
.
createOrReplaceTempView
(
'device_filter_df'
)
df
.
cache
()
df
.
show
(
20
,
False
)
return
df
def
get_black_device
(
spark
):
sql
=
"""
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
"""
df
=
spark
.
sql
(
sql
)
df
.
createOrReplaceTempView
(
'black_device_df'
)
df
.
cache
(
)
df
.
show
(
20
,
False
)
return
df
def
getExposureSql
(
start
,
end
):
# t1.partition_date, t1.cl_id device_id, t1.card_id, t1.time_stamp, t1.cl_type as os, t1.city_id as user_city_id
...
...
@@ -639,28 +655,10 @@ def getExposureSql(start, end):
group by partition_date, city_id, cl_type, cl_id, card_id, app_session_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
device_filter_df t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
black_device_df t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
...
...
@@ -1108,19 +1106,16 @@ def get_and_save_device_feature(spark, fields_na_value_dict, days = 180):
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
black_device_df t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
device_feature_df
=
spark
.
sql
(
sql
)
.
toPandas
()
device_feature_df
=
spark
.
sql
(
sql
)
device_feature_df
=
device_feature_df
.
na
.
fill
(
fields_na_value_dict
)
device_feature_df
.
printSchema
()
device_feature_df
=
device_feature_df
.
toPandas
()
conn
=
getRedisConn
()
BATCH
=
5000
Key_TMP
=
'strategy:model:rank:widedeep:device:feature:tmp'
...
...
@@ -1136,6 +1131,8 @@ def get_click_exp_rating_df(trainDays, spark):
startDay
,
endDay
=
get_click_exp_start_end_time
(
trainDays
)
#获取曝光和点击行为数据
get_device_filter
(
spark
,
startDay
,
endDay
)
get_black_device
(
spark
)
clickSql
=
getClickSql
(
startDay
,
endDay
)
expSql
=
getExposureSql
(
startDay
,
endDay
)
clickDF
=
spark
.
sql
(
clickSql
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment