Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
e776b8b5
Commit
e776b8b5
authored
Jul 29, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
service model 优化
parent
190731d8
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
861 additions
and
0 deletions
+861
-0
featureEng2.py
spark/featureEng2.py
+861
-0
No files found.
spark/featureEng2.py
0 → 100644
View file @
e776b8b5
import
sys
import
os
from
datetime
import
date
,
timedelta
from
elasticsearch
import
Elasticsearch
from
elasticsearch.helpers
import
scan
import
time
import
redis
from
pyspark
import
SparkContext
,
SparkConf
from
pyspark.sql
import
SparkSession
import
pyspark.sql
as
sql
from
pyspark.sql.functions
import
when
,
col
from
pyspark.sql.types
import
*
from
pyspark.sql
import
functions
as
F
from
pyspark.ml
import
Pipeline
from
pyspark.ml.feature
import
StringIndexer
,
QuantileDiscretizer
,
MinMaxScaler
from
collections
import
defaultdict
import
json
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))))
import
utils.configUtils
as
configUtils
# import utils.connUtils as connUtils
import
pandas
as
pd
# os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
"""
特征工程
"""
ITEM_MULTI_COLUMN_EXTRA_MAP
=
{
"first_demands"
:
1
,
"second_demands"
:
5
,
"first_solutions"
:
1
,
"second_solutions"
:
5
,
"first_positions"
:
1
,
"second_positions"
:
5
,
"tags_v3"
:
10
,
}
USER_MULTI_COLUMN_EXTRA_MAP
=
{
"first_demands"
:
1
,
"second_demands"
:
3
,
"first_solutions"
:
1
,
"second_solutions"
:
3
,
"first_positions"
:
1
,
"second_positions"
:
3
,
"tags_v3"
:
5
,
}
ITEM_NUMBER_COLUMNS
=
[
"lowest_price"
,
"smart_rank2"
,
"case_count"
,
"ordered_user_ids_count"
]
ITEM_CATE_COLUMNS
=
[
"service_type"
,
"merchant_id"
,
"doctor_type"
,
"doctor_id"
,
"doctor_famous"
,
"hospital_id"
,
"hospital_city_tag_id"
,
"hospital_type"
,
"hospital_is_high_quality"
]
NUMBER_PRECISION
=
2
VERSION
=
configUtils
.
SERVICE_VERSION
FEATURE_USER_KEY
=
"Strategy:rec:feature:service:"
+
VERSION
+
":user:"
FEATURE_ITEM_KEY
=
"Strategy:rec:feature:service:"
+
VERSION
+
":item:"
FEATURE_VOCAB_KEY
=
"Strategy:rec:vocab:service:"
+
VERSION
FEATURE_COLUMN_KEY
=
"Strategy:rec:column:service:"
+
VERSION
TRAIN_FILE_PATH
=
"service_feature_"
+
VERSION
ITEM_PREFIX
=
"item_"
def
getRedisConn
():
pool
=
redis
.
ConnectionPool
(
host
=
"172.16.50.145"
,
password
=
"XfkMCCdWDIU
%
ls$h"
,
port
=
6379
,
db
=
0
)
conn
=
redis
.
Redis
(
connection_pool
=
pool
)
# conn = redis.Redis(host="172.16.50.145", port=6379, password="XfkMCCdWDIU%ls$h",db=0)
# conn = redis.Redis(host="172.18.51.10", port=6379,db=0) #test
return
conn
def
addItemFeatures
(
samples
,
itemDF
,
dataVocab
,
multiVocab
):
itemDF
=
itemDF
.
withColumnRenamed
(
"id"
,
"itemid"
)
# 数据过滤:无医生
itemDF
=
itemDF
.
filter
(
col
(
"doctor_id"
)
!=
"-1"
)
# itemid
vocabList
=
collectColumnToVocab
(
itemDF
,
"itemid"
)
dataVocab
[
"itemid"
]
=
vocabList
# null处理
for
c
in
ITEM_NUMBER_COLUMNS
:
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
ITEM_PREFIX
+
c
,
when
(
col
(
c
)
.
isNull
(),
0
)
.
otherwise
(
col
(
c
))
.
cast
(
"float"
))
.
drop
(
c
)
for
c
in
ITEM_CATE_COLUMNS
:
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
ITEM_PREFIX
+
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
.
drop
(
c
)
# 字典添加
dataVocab
[
ITEM_PREFIX
+
c
]
=
collectColumnToVocab
(
itemDF
,
ITEM_PREFIX
+
c
)
# 离散特征处理
for
c
,
v
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
items
():
print
(
"null count:"
,
c
,
itemDF
.
filter
(
col
(
c
)
.
isNull
())
.
count
())
itemDF
=
itemDF
.
withColumn
(
c
,
F
.
when
(
F
.
col
(
c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
c
)))
multiVocab
[
c
]
=
collectMutiColumnToVocab
(
itemDF
,
c
)
for
i
in
range
(
1
,
v
+
1
):
new_c
=
ITEM_PREFIX
+
c
+
"__"
+
str
(
i
)
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
split
(
F
.
col
(
c
),
","
)[
i
-
1
])
itemDF
=
itemDF
.
withColumn
(
new_c
,
F
.
when
(
F
.
col
(
new_c
)
.
isNull
(),
"-1"
)
.
otherwise
(
F
.
col
(
new_c
)))
dataVocab
[
new_c
]
=
multiVocab
[
c
]
samples
=
samples
.
join
(
itemDF
,
on
=
[
'itemid'
],
how
=
'inner'
)
# 统计特征处理
print
(
"统计特征处理..."
)
staticFeatures
=
samples
.
groupBy
(
'itemid'
)
.
agg
(
F
.
count
(
F
.
lit
(
1
))
.
alias
(
'itemRatingCount'
),
F
.
avg
(
F
.
col
(
'rating'
))
.
alias
(
'itemRatingAvg'
),
F
.
stddev
(
F
.
col
(
'rating'
))
.
alias
(
'itemRatingStddev'
))
.
fillna
(
0
)
\
.
withColumn
(
'itemRatingStddev'
,
F
.
format_number
(
F
.
col
(
'itemRatingStddev'
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
'itemRatingAvg'
,
F
.
format_number
(
F
.
col
(
'itemRatingAvg'
),
NUMBER_PRECISION
)
.
cast
(
"float"
))
# join item rating features
samples
=
samples
.
join
(
staticFeatures
,
on
=
[
'itemid'
],
how
=
'left'
)
print
(
"连续特征处理..."
)
# todo 分桶比较耗时,可以考虑做非线性转换
# 连续特征处理
pipelineStage
=
[]
# Normalization
# for c in ["itemRatingAvg","itemRatingStddev"]:
# pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c+"Scale"))
# bucketing
bucketColumns
=
[
ITEM_PREFIX
+
"case_count"
,
ITEM_PREFIX
+
"ordered_user_ids_count"
,
ITEM_PREFIX
+
"lowest_price"
,
"itemRatingCount"
,
"itemRatingStddev"
,
"itemRatingAvg"
]
for
c
in
bucketColumns
:
pipelineStage
.
append
(
QuantileDiscretizer
(
numBuckets
=
10
,
inputCol
=
c
,
outputCol
=
c
+
"Bucket"
))
featurePipeline
=
Pipeline
(
stages
=
pipelineStage
)
samples
=
featurePipeline
.
fit
(
samples
)
.
transform
(
samples
)
# 转string
for
c
in
bucketColumns
:
samples
=
samples
.
withColumn
(
c
+
"Bucket"
,
F
.
col
(
c
+
"Bucket"
)
.
cast
(
"string"
))
.
drop
(
c
)
dataVocab
[
c
+
"Bucket"
]
=
[
str
(
float
(
i
))
for
i
in
range
(
11
)]
samples
.
printSchema
()
# samples.show(5, truncate=False)
return
samples
def
extractTags
(
genres_list
):
genres_dict
=
defaultdict
(
int
)
for
genres
in
genres_list
:
for
genre
in
genres
.
split
(
','
):
genres_dict
[
genre
]
+=
1
sortedGenres
=
sorted
(
genres_dict
.
items
(),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
return
[
x
[
0
]
for
x
in
sortedGenres
]
# sql版本不支持F.reverse
def
arrayReverse
(
arr
):
arr
.
reverse
()
return
arr
def
addUserFeatures
(
samples
,
dataVocab
,
multiVocab
):
dataVocab
[
"userid"
]
=
collectColumnToVocab
(
samples
,
"userid"
)
dataVocab
[
"user_os"
]
=
[
"ios"
,
"android"
,
"-1"
]
extractTagsUdf
=
F
.
udf
(
extractTags
,
ArrayType
(
StringType
()))
arrayReverseUdf
=
F
.
udf
(
arrayReverse
,
ArrayType
(
StringType
()))
samples
=
samples
.
withColumnRenamed
(
"cl_id"
,
"userid"
)
print
(
"user历史数据处理..."
)
# user历史记录
samples
=
samples
\
.
withColumn
(
'userPositiveHistory'
,
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
'itemid'
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
"userid"
)
.
orderBy
(
F
.
col
(
"timestamp"
))
.
rowsBetween
(
-
100
,
-
1
)))
\
.
withColumn
(
"userPositiveHistory"
,
arrayReverseUdf
(
F
.
col
(
"userPositiveHistory"
)))
for
i
in
range
(
1
,
11
):
samples
=
samples
.
withColumn
(
"userRatedHistory"
+
str
(
i
),
F
.
when
(
F
.
col
(
"userPositiveHistory"
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
"userPositiveHistory"
)[
i
-
1
])
.
otherwise
(
"-1"
))
dataVocab
[
"userRatedHistory"
+
str
(
i
)]
=
dataVocab
[
"itemid"
]
samples
=
samples
.
drop
(
"userPositiveHistory"
)
# user历史点击分值统计
print
(
"统计特征处理..."
)
samples
=
samples
\
.
withColumn
(
'userRatingCount'
,
F
.
count
(
F
.
lit
(
1
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)))
\
.
withColumn
(
"userRatingAvg"
,
F
.
format_number
(
F
.
avg
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
withColumn
(
"userRatingStddev"
,
F
.
format_number
(
F
.
stddev
(
F
.
col
(
"rating"
))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
)),
NUMBER_PRECISION
)
.
cast
(
"float"
))
\
.
filter
(
F
.
col
(
"userRatingCount"
)
>
1
)
# user偏好
for
c
,
v
in
USER_MULTI_COLUMN_EXTRA_MAP
.
items
():
new_col
=
"user"
+
"__"
+
c
samples
=
samples
.
withColumn
(
new_col
,
extractTagsUdf
(
F
.
collect_list
(
when
(
F
.
col
(
'label'
)
==
1
,
F
.
col
(
c
))
.
otherwise
(
F
.
lit
(
None
)))
.
over
(
sql
.
Window
.
partitionBy
(
'userid'
)
.
orderBy
(
'timestamp'
)
.
rowsBetween
(
-
100
,
-
1
))))
for
i
in
range
(
1
,
v
+
1
):
samples
=
samples
.
withColumn
(
new_col
+
"__"
+
str
(
i
),
F
.
when
(
F
.
col
(
new_col
)[
i
-
1
]
.
isNotNull
(),
F
.
col
(
new_col
)[
i
-
1
])
.
otherwise
(
"-1"
))
dataVocab
[
new_col
+
"__"
+
str
(
i
)]
=
multiVocab
[
c
]
samples
=
samples
.
drop
(
new_col
)
# .drop(c).drop(new_col)
print
(
"连续特征处理..."
)
pipelineStage
=
[]
# Normalization
# for c in ["userRatingAvg", "userRatingStddev"]:
# pipelineStage.append(MinMaxScaler(inputCol=c, outputCol=c + "Scale"))
# bucketing
bucketColumns
=
[
"userRatingCount"
,
"userRatingAvg"
,
"userRatingStddev"
]
for
c
in
bucketColumns
:
pipelineStage
.
append
(
QuantileDiscretizer
(
numBuckets
=
10
,
inputCol
=
c
,
outputCol
=
c
+
"Bucket"
))
featurePipeline
=
Pipeline
(
stages
=
pipelineStage
)
samples
=
featurePipeline
.
fit
(
samples
)
.
transform
(
samples
)
# 转string
for
c
in
bucketColumns
:
samples
=
samples
.
withColumn
(
c
+
"Bucket"
,
F
.
col
(
c
+
"Bucket"
)
.
cast
(
"string"
))
.
drop
(
c
)
dataVocab
[
c
+
"Bucket"
]
=
[
str
(
float
(
i
))
for
i
in
range
(
11
)]
samples
.
printSchema
()
# samples.show(5,truncate=False)
return
samples
def
addSampleLabel
(
ratingSamples
):
ratingSamples
=
ratingSamples
.
withColumn
(
'label'
,
when
(
F
.
col
(
'rating'
)
>=
1
,
1
)
.
otherwise
(
0
))
ratingSamples
.
show
(
5
,
truncate
=
False
)
ratingSamples
.
printSchema
()
return
ratingSamples
def
samplesNegAndUnion
(
samplesPos
,
samplesNeg
):
# 正负样本 1:4
pos_count
=
samplesPos
.
count
()
neg_count
=
samplesNeg
.
count
()
print
(
"before filter posSize:{},negSize:{}"
.
format
(
str
(
pos_count
),
str
(
neg_count
)))
samplesNeg
=
samplesNeg
.
sample
(
pos_count
*
4
/
neg_count
)
samples
=
samplesNeg
.
union
(
samplesPos
)
dataSize
=
samples
.
count
()
print
(
"dataSize:{}"
.
format
(
str
(
dataSize
)))
return
samples
def
splitAndSaveTrainingTestSamplesByTimeStamp
(
samples
,
splitTimestamp
,
file_path
):
samples
=
samples
.
withColumn
(
"timestampLong"
,
F
.
col
(
"timestamp"
)
.
cast
(
LongType
()))
# quantile = smallSamples.stat.approxQuantile("timestampLong", [0.8], 0.05)
# splitTimestamp = quantile[0]
train
=
samples
.
where
(
F
.
col
(
"timestampLong"
)
<=
splitTimestamp
)
.
drop
(
"timestampLong"
)
test
=
samples
.
where
(
F
.
col
(
"timestampLong"
)
>
splitTimestamp
)
.
drop
(
"timestampLong"
)
print
(
"split train size:{},test size:{}"
.
format
(
str
(
train
.
count
()),
str
(
test
.
count
())))
trainingSavePath
=
file_path
+
'_train'
testSavePath
=
file_path
+
'_test'
train
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
trainingSavePath
)
test
.
write
.
option
(
"header"
,
"true"
)
.
option
(
"delimiter"
,
"|"
)
.
mode
(
'overwrite'
)
.
csv
(
testSavePath
)
def
collectColumnToVocab
(
samples
,
column
):
datas
=
samples
.
select
(
column
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
for
d
in
datas
:
if
d
[
column
]:
vocabSet
.
add
(
str
(
d
[
column
]))
vocabSet
.
add
(
"-1"
)
# 空值的默认
return
list
(
vocabSet
)
def
collectMutiColumnToVocab
(
samples
,
column
):
datas
=
samples
.
select
(
column
)
.
distinct
()
.
collect
()
tagSet
=
set
()
for
d
in
datas
:
if
d
[
column
]:
for
tag
in
d
[
column
]
.
split
(
","
):
tagSet
.
add
(
tag
)
tagSet
.
add
(
"-1"
)
# 空值默认
return
list
(
tagSet
)
def
getDataVocab
(
samples
,
model_columns
):
dataVocab
=
{}
multiVocab
=
{}
# 多值特征
for
c
in
ITEM_MULTI_COLUMN_EXTRA_MAP
.
keys
():
print
(
c
)
multiVocab
[
c
]
=
collectMutiColumnToVocab
(
samples
,
c
)
samples
=
samples
.
drop
(
c
)
# id类特征 和 类别特征
for
c
in
[
"userid"
]:
print
(
c
)
dataVocab
[
c
]
=
collectColumnToVocab
(
samples
,
c
)
for
c
in
model_columns
:
# 判断是否以Bucket结尾
if
c
.
endswith
(
"Bucket"
):
datas
=
samples
.
select
(
c
)
.
distinct
()
.
collect
()
vocabSet
=
set
()
for
d
in
datas
:
if
d
[
c
]:
vocabSet
.
add
(
str
(
d
[
c
]))
vocabSet
.
add
(
"-1"
)
# 空值的默认
dataVocab
[
c
]
=
list
(
vocabSet
)
# elif c.count("userRatedHistory") > 0:
# dataVocab[c] = dataVocab["itemid"]
else
:
# 判断是否多值离散列
for
cc
,
v
in
multiVocab
.
items
():
if
c
.
count
(
cc
)
>
0
:
dataVocab
[
c
]
=
v
return
dataVocab
def
dataVocabToRedis
(
dataVocab
):
conn
=
getRedisConn
()
conn
.
set
(
FEATURE_VOCAB_KEY
,
dataVocab
)
conn
.
expire
(
FEATURE_VOCAB_KEY
,
60
*
60
*
24
*
7
)
def
featureColumnsToRedis
(
columns
):
conn
=
getRedisConn
()
conn
.
set
(
FEATURE_COLUMN_KEY
,
json
.
dumps
(
columns
))
conn
.
expire
(
FEATURE_COLUMN_KEY
,
60
*
60
*
24
*
7
)
def
featureToRedis
(
key
,
datas
):
conn
=
getRedisConn
()
for
k
,
v
in
datas
.
items
():
newKey
=
key
+
k
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
def
collectFeaturesToDict
(
samples
,
columns
,
prefix
):
idCol
=
prefix
+
"id"
timestampCol
=
idCol
+
"_timestamp"
#根据timestamp获取每个user最新的记录
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
resDatas
=
samples
.
join
(
prefixSamples
,
on
=
[
idCol
],
how
=
'left'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
resDatas
=
resDatas
.
select
(
*
columns
)
.
distinct
()
.
collect
()
print
(
prefix
,
len
(
resDatas
))
return
{
d
[
idCol
]:
json
.
dumps
(
d
.
asDict
(),
ensure_ascii
=
False
)
for
d
in
resDatas
}
def
featuresToRedis
(
samples
,
columns
,
prefix
,
redisKey
):
idCol
=
prefix
+
"id"
timestampCol
=
idCol
+
"_timestamp"
def
toRedis
(
datas
):
conn
=
getRedisConn
()
for
d
in
datas
:
k
=
d
[
idCol
]
v
=
json
.
dumps
(
d
.
asDict
(),
ensure_ascii
=
False
)
newKey
=
redisKey
+
k
conn
.
set
(
newKey
,
v
)
conn
.
expire
(
newKey
,
60
*
60
*
24
*
7
)
#根据timestamp获取每个user最新的记录
prefixSamples
=
samples
.
groupBy
(
idCol
)
.
agg
(
F
.
max
(
"timestamp"
)
.
alias
(
timestampCol
))
resDatas
=
samples
.
join
(
prefixSamples
,
on
=
[
idCol
],
how
=
'left'
)
.
where
(
F
.
col
(
"timestamp"
)
==
F
.
col
(
timestampCol
))
resDatas
=
resDatas
.
select
(
*
columns
)
.
distinct
()
print
(
prefix
,
resDatas
.
count
())
resDatas
.
repartition
(
8
)
.
foreachPartition
(
toRedis
)
"""
数据加载
"""
CONTENT_TYPE
=
"service"
SERVICE_HOSTS
=
[
{
'host'
:
"172.16.52.33"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.19"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.48"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.27"
,
'port'
:
9200
},
{
'host'
:
"172.16.52.34"
,
'port'
:
9200
}
]
ES_INDEX
=
"gm-dbmw-service-read"
ES_INDEX_TEST
=
"gm_test-service-read"
ACTION_REG
=
r"""^\\d+$"""
def
getEsConn_test
():
host_config
=
[{
'host'
:
'172.18.52.14'
,
'port'
:
9200
},
{
'host'
:
'172.18.52.133'
,
'port'
:
9200
},
{
'host'
:
'172.18.52.7'
,
'port'
:
9200
}]
return
Elasticsearch
(
host_config
,
http_auth
=
(
'elastic'
,
'gm_test'
),
timeout
=
3600
)
def
getEsConn
():
return
Elasticsearch
(
SERVICE_HOSTS
,
http_auth
=
(
'elastic'
,
'gengmei!@#'
),
timeout
=
3600
)
def
getClickSql
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.card_id,t1.time_stamp,t1.page_stay,t1.cl_type as os,t1.city_id as user_city_id
FROM
(
select partition_date,city_id,cl_id,business_id as card_id,time_stamp,page_stay,cl_type
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date>='{startDay}' and partition_date<='{endDay}'
AND page_name='welfare_detail'
-- AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
group by partition_date,city_id,cl_id,business_id,time_stamp,page_stay,cl_type
) AS t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
getExposureSql
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay,cl_type as os,t1.city_id as user_city_id
from
( --新首页卡片曝光
SELECT partition_date,city_id,cl_type,cl_id,card_id,max(time_stamp) as time_stamp
FROM online.ml_community_precise_exposure_detail
where partition_date>='{startDay}' and partition_date<='{endDay}'
and action in ('page_precise_exposure','home_choiceness_card_exposure')
and cl_id IS NOT NULL
and card_id IS NOT NULL
and is_exposure='1'
--and page_name='home'
--and tab_name='精选'
--and page_name in ('home','search_result_more')
and ((page_name='home' and tab_name='精选') or (page_name='category' and tab_name = '商品'))
and card_type in ('card','video')
and card_content_type in ('service')
and (get_json_object(exposure_card,'$.in_page_pos') is null or get_json_object(exposure_card,'$.in_page_pos') != 'seckill')
group by partition_date,city_id,cl_type,cl_id,card_id,app_session_id
) t1
join
( --渠道,新老
SELECT distinct device_id
FROM online.ml_device_day_active_status
where partition_date>='{startDay}' and partition_date<='{endDay}'
AND active_type in ('1','2','4')
and first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown')
AND first_channel_source_type not like 'promotion
\
_jf
\
_
%
'
) t2
on t1.cl_id = t2.device_id
LEFT JOIN
( --去除黑名单
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY =regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)t3
on t3.device_id=t2.device_id
WHERE t3.device_id is null
"""
.
format
(
startDay
=
start
,
endDay
=
end
)
print
(
sql
)
return
sql
def
getClickSql2
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date, t1.cl_id device_id, t1.business_id card_id,t1.time_stamp time_stamp,t1.page_stay as page_stay
FROM
(select partition_date,cl_id,business_id,action,page_name,page_stay,time_stamp,page_stay
from online.bl_hdfs_maidian_updates
where action = 'page_view'
AND partition_date BETWEEN '{}' AND '{}'
AND page_name='welfare_detail'
AND page_stay>=1
AND cl_id is not null
AND cl_id != ''
AND business_id is not null
AND business_id != ''
AND business_id rlike '{}'
) AS t1
JOIN
(select partition_date,active_type,first_channel_source_type,device_id
from online.ml_device_day_active_status
where partition_date BETWEEN '{}' AND '{}'
AND active_type IN ('1', '2', '4')
AND first_channel_source_type not IN ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
AND first_channel_source_type not LIKE 'promotion
\\
_jf
\\
_
%
') as t2
ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
(
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY = regexp_replace(DATE_SUB(current_date,1) ,'-','')
AND is_abnormal_device = 'true'
)dev
on t1.cl_id=dev.device_id
WHERE dev.device_id is null
"""
.
format
(
start
,
end
,
ACTION_REG
,
start
,
end
)
print
(
sql
)
return
sql
def
getExposureSql2
(
start
,
end
):
sql
=
"""
SELECT DISTINCT t1.partition_date,t1.cl_id device_id,t1.card_id,t1.time_stamp, 0 as page_stay
FROM
(SELECT partition_date,cl_id,card_id,time_stamp
FROM online.ml_community_precise_exposure_detail
WHERE cl_id IS NOT NULL
AND card_id IS NOT NULL
AND card_id rlike '{}'
AND action='page_precise_exposure'
AND card_content_type = '{}'
AND is_exposure = 1 ) AS t1
LEFT JOIN online.ml_device_day_active_status AS t2 ON t1.cl_id = t2.device_id
AND t1.partition_date = t2.partition_date
LEFT JOIN
( SELECT DISTINCT device_id
FROM ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
WHERE PARTITION_DAY = regexp_replace(DATE_SUB(CURRENT_DATE,1),'-','')
AND is_abnormal_device = 'true' )dev
ON t1.cl_id=dev.device_id
WHERE dev.device_id IS NULL
AND t2.partition_date BETWEEN '{}' AND '{}'
AND t2.active_type IN ('1',
'2',
'4')
AND t2.first_channel_source_type NOT IN ('yqxiu1',
'yqxiu2',
'yqxiu3',
'yqxiu4',
'yqxiu5',
'mxyc1',
'mxyc2',
'mxyc3' ,
'wanpu',
'jinshan',
'jx',
'maimai',
'zhuoyi',
'huatian',
'suopingjingling',
'mocha',
'mizhe',
'meika',
'lamabang' ,
'js-az1',
'js-az2',
'js-az3',
'js-az4',
'js-az5',
'jfq-az1',
'jfq-az2',
'jfq-az3',
'jfq-az4',
'jfq-az5',
'toufang1' ,
'toufang2',
'toufang3',
'toufang4',
'toufang5',
'toufang6',
'TF-toufang1',
'TF-toufang2',
'TF-toufang3',
'TF-toufang4' ,
'TF-toufang5',
'tf-toufang1',
'tf-toufang2',
'tf-toufang3',
'tf-toufang4',
'tf-toufang5',
'benzhan',
'promotion_aso100' ,
'promotion_qianka',
'promotion_xiaoyu',
'promotion_dianru',
'promotion_malioaso',
'promotion_malioaso-shequ' ,
'promotion_shike',
'promotion_julang_jl03',
'promotion_zuimei')
AND t2.first_channel_source_type NOT LIKE 'promotion
\\
_jf
\\
_
%
'
"""
.
format
(
ACTION_REG
,
CONTENT_TYPE
,
start
,
end
)
print
(
sql
)
return
sql
def
connectDoris
(
spark
,
table
):
return
spark
.
read
\
.
format
(
"jdbc"
)
\
.
option
(
"driver"
,
"com.mysql.jdbc.Driver"
)
\
.
option
(
"url"
,
"jdbc:mysql://172.16.30.136:3306/doris_prod"
)
\
.
option
(
"dbtable"
,
table
)
\
.
option
(
"user"
,
"doris"
)
\
.
option
(
"password"
,
"o5gbA27hXHHm"
)
\
.
load
()
def
get_spark
(
appName
):
sparkConf
=
SparkConf
()
sparkConf
.
set
(
"spark.sql.crossJoin.enabled"
,
True
)
sparkConf
.
set
(
"spark.debug.maxToStringFields"
,
"100"
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
False
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_read"
,
True
)
sparkConf
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
True
)
sparkConf
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
True
)
sparkConf
.
set
(
"spark.serializer"
,
"org.apache.spark.serializer.KryoSerializer"
)
sparkConf
.
set
(
"mapreduce.output.fileoutputformat.compress"
,
False
)
sparkConf
.
set
(
"mapreduce.map.output.compress"
,
False
)
spark
=
(
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
appName
(
appName
)
.
enableHiveSupport
()
.
getOrCreate
())
return
spark
def
init_es_query
():
q
=
{
"_source"
:
{
"includes"
:[]
},
"query"
:
{
"bool"
:
{
"must"
:
[],
"must_not"
:
[],
"should"
:
[]
}
}
}
return
q
def
parseSource
(
_source
):
id
=
str
(
_source
.
setdefault
(
"id"
,
-
1
))
case_count
=
_source
.
setdefault
(
"case_count"
,
0
)
sales_count
=
_source
.
setdefault
(
"sales_count"
,
0
)
service_type
=
str
(
_source
.
setdefault
(
"service_type"
,
-
1
))
second_demands
=
','
.
join
(
_source
.
setdefault
(
"second_demands"
,[
"-1"
]))
second_solutions
=
','
.
join
(
_source
.
setdefault
(
"second_solutions"
,[
"-1"
]))
second_positions
=
','
.
join
(
_source
.
setdefault
(
"second_positions"
,[
"-1"
]))
# sku
sku_list
=
_source
.
setdefault
(
"sku_list"
,[])
sku_tags_list
=
[]
sku_show_tags_list
=
[]
sku_price_list
=
[
0.0
]
for
sku
in
sku_list
:
sku_tags_list
+=
sku
.
setdefault
(
"sku_tags_id"
,[])
sku_show_tags_list
.
append
(
sku
.
setdefault
(
"show_project_type_name"
,
""
))
sku_price_list
.
append
(
sku
.
setdefault
(
"price"
,
0.0
))
sku_tags
=
","
.
join
([
str
(
i
)
for
i
in
sku_tags_list
])
if
len
(
sku_tags_list
)
>
0
else
"-1"
sku_show_tags
=
","
.
join
(
sku_show_tags_list
)
if
len
(
sku_show_tags_list
)
>
0
else
"-1"
sku_price
=
min
(
sku_price_list
)
#merchant_id
merchant_id
=
str
(
_source
.
setdefault
(
"merchant_id"
,
"-1"
))
# doctor_type id famous_doctor
doctor
=
_source
.
setdefault
(
"doctor"
,{})
doctor_type
=
str
(
doctor
.
setdefault
(
"doctor_type"
,
"-1"
))
doctor_id
=
str
(
doctor
.
setdefault
(
"id"
,
"-1"
))
doctor_famous
=
str
(
int
(
doctor
.
setdefault
(
"famous_doctor"
,
False
)))
# hospital id city_tag_id hospital_type is_high_quality
hospital
=
doctor
.
setdefault
(
"hospital"
,
{})
hospital_id
=
str
(
hospital
.
setdefault
(
"id"
,
"-1"
))
hospital_city_tag_id
=
str
(
hospital
.
setdefault
(
"city_tag_id"
,
-
1
))
hospital_type
=
str
(
hospital
.
setdefault
(
"hospital_type"
,
"-1"
))
hospital_is_high_quality
=
str
(
int
(
hospital
.
setdefault
(
"is_high_quality"
,
False
)))
data
=
[
id
,
case_count
,
sales_count
,
service_type
,
merchant_id
,
doctor_type
,
doctor_id
,
doctor_famous
,
hospital_id
,
hospital_city_tag_id
,
hospital_type
,
hospital_is_high_quality
,
second_demands
,
second_solutions
,
second_positions
,
sku_tags
,
sku_show_tags
,
sku_price
]
return
data
# es中获取特征
def
get_service_feature_df
():
es_columns
=
[
"id"
,
"sales_count"
,
"doctor"
,
"case_count"
,
"service_type"
,
"merchant_id"
,
"second_demands"
,
"second_solutions"
,
"second_positions"
,
"sku_list"
]
query
=
init_es_query
()
query
[
"_source"
][
"includes"
]
=
es_columns
print
(
json
.
dumps
(
query
),
flush
=
True
)
es_cli
=
getEsConn
()
scan_re
=
scan
(
client
=
es_cli
,
index
=
ES_INDEX
,
query
=
query
,
scroll
=
'3m'
)
datas
=
[]
for
res
in
scan_re
:
_source
=
res
[
'_source'
]
data
=
parseSource
(
_source
)
datas
.
append
(
data
)
print
(
"item size:"
,
len
(
datas
))
itemColumns
=
[
'id'
,
'case_count'
,
'sales_count'
,
'service_type'
,
'merchant_id'
,
'doctor_type'
,
'doctor_id'
,
'doctor_famous'
,
'hospital_id'
,
'hospital_city_tag_id'
,
'hospital_type'
,
'hospital_is_high_quality'
,
'second_demands'
,
'second_solutions'
,
'second_positions'
,
'sku_tags'
,
'sku_show_tags'
,
'sku_price'
]
df
=
pd
.
DataFrame
(
datas
,
columns
=
itemColumns
)
return
df
def
addDays
(
n
,
format
=
"
%
Y
%
m
%
d"
):
return
(
date
.
today
()
+
timedelta
(
days
=
n
))
.
strftime
(
format
)
if
__name__
==
'__main__'
:
start
=
time
.
time
()
#入参
trainDays
=
int
(
sys
.
argv
[
1
])
print
(
'trainDays:{}'
.
format
(
trainDays
),
flush
=
True
)
endDay
=
addDays
(
0
)
startDay
=
addDays
(
-
int
(
trainDays
))
print
(
"train_data start:{} end:{}"
.
format
(
startDay
,
endDay
))
conf
=
SparkConf
()
.
setAppName
(
'featureEngineering'
)
.
setMaster
(
'local'
)
spark
=
SparkSession
.
builder
.
config
(
conf
=
conf
)
.
getOrCreate
()
spark
.
sparkContext
.
setLogLevel
(
"ERROR"
)
# 行为数据
clickSql
=
getClickSql
(
startDay
,
endDay
)
expSql
=
getExposureSql
(
startDay
,
endDay
)
clickDF
=
spark
.
sql
(
clickSql
)
expDF
=
spark
.
sql
(
expSql
)
# ratingDF = samplesNegAndUnion(clickDF,expDF)
ratingDF
=
clickDF
.
union
(
expDF
)
ratingDF
=
ratingDF
.
withColumnRenamed
(
"time_stamp"
,
"timestamp"
)
\
.
withColumnRenamed
(
"device_id"
,
"userid"
)
\
.
withColumnRenamed
(
"card_id"
,
"itemid"
)
\
.
withColumnRenamed
(
"page_stay"
,
"rating"
)
\
.
withColumnRenamed
(
"os"
,
"user_os"
)
print
(
ratingDF
.
columns
)
print
(
ratingDF
.
show
(
10
,
truncate
=
False
))
print
(
"添加label..."
)
ratingSamplesWithLabel
=
addSampleLabel
(
ratingDF
)
df
=
ratingSamplesWithLabel
.
toPandas
()
df
=
pd
.
DataFrame
(
df
)
posCount
=
df
.
loc
[
df
[
"label"
]
==
0
][
"label"
]
.
count
()
negCount
=
df
.
loc
[
df
[
"label"
]
==
1
][
"label"
]
.
count
()
print
(
"pos size:"
+
str
(
posCount
),
"neg size:"
+
str
(
negCount
))
itemDF
=
get_service_feature_df
(
spark
)
print
(
itemDF
.
columns
)
print
(
itemDF
.
show
(
10
,
truncate
=
False
))
itemDF
.
to_csv
(
"/tmp/service_{}.csv"
.
format
(
endDay
))
df
.
to_csv
(
"/tmp/service_train_{}.csv"
.
format
(
endDay
))
# # 数据字典
# dataVocab = {}
# multiVocab = {}
#
# print("处理item特征...")
# timestmp1 = int(round(time.time()))
# samplesWithItemFeatures = addItemFeatures(ratingSamplesWithLabel, itemDF, dataVocab,multiVocab)
# timestmp2 = int(round(time.time()))
# print("处理item特征, 耗时s:{}".format(timestmp2 - timestmp1))
# print("multiVocab:")
# print(multiVocab.keys())
#
# print("处理user特征...")
# samplesWithUserFeatures = addUserFeatures(samplesWithItemFeatures,dataVocab,multiVocab)
# timestmp3 = int(round(time.time()))
# print("处理user特征, 耗时s:{}".format(timestmp3 - timestmp2))
#
# # user columns
# user_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("user")]
# print("collect feature for user:{}".format(str(user_columns)))
# # item columns
# item_columns = [c for c in samplesWithUserFeatures.columns if c.startswith("item")]
# print("collect feature for item:{}".format(str(item_columns)))
# # model columns
# print("model columns to redis...")
# model_columns = user_columns + item_columns
# featureColumnsToRedis(model_columns)
#
# print("数据字典save...")
# print("dataVocab:", str(dataVocab.keys()))
# vocab_path = "../vocab/{}_vocab.json".format(VERSION)
# dataVocabStr = json.dumps(dataVocab, ensure_ascii=False)
# open(configUtils.VOCAB_PATH, mode='w', encoding='utf-8').write(dataVocabStr)
#
# """特征数据存入redis======================================"""
# # user特征数据存入redis
# featuresToRedis(samplesWithUserFeatures, user_columns, "user", FEATURE_USER_KEY)
# timestmp5 = int(round(time.time()))
# print("user feature to redis 耗时s:{}".format(timestmp5 - timestmp3))
# # userDatas = collectFeaturesToDict(samplesWithUserFeatures, user_columns, "user")
# # featureToRedis(FEATURE_USER_KEY, userDatas)
# # itemDatas = collectFeaturesToDict(samplesWithUserFeatures, item_columns, "item")
# # featureToRedis(FEATURE_ITEM_KEY, itemDatas)
#
# # item特征数据存入redis
# # todo 添加最近一个月有行为的item,待优化:扩大item范围
# featuresToRedis(samplesWithUserFeatures, item_columns, "item", FEATURE_ITEM_KEY)
# timestmp6 = int(round(time.time()))
# print("item feature to redis 耗时s:{}".format(timestmp6 - timestmp5))
#
# """训练数据保存 ======================================"""
# timestmp3 = int(round(time.time()))
# train_columns = model_columns + ["label", "timestamp", "rating"]
# trainSamples = samplesWithUserFeatures.select(*train_columns)
# print("write to hdfs start...")
# splitTimestamp = int(time.mktime(time.strptime(addDays(0), "%Y%m%d")))
# splitAndSaveTrainingTestSamplesByTimeStamp(trainSamples, splitTimestamp, TRAIN_FILE_PATH)
# print("write to hdfs success...")
# timestmp4 = int(round(time.time()))
# print("数据写入hdfs 耗时s:{}".format(timestmp4 - timestmp3))
#
# print("总耗时m:{}".format((timestmp4 - start)/60))
#
# spark.stop()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment