1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
"""
matplotlib includes a framework for arbitrary geometric
transformations that is used determine the final position of all
elements drawn on the canvas.
Transforms are composed into trees of :class:`TransformNode` objects
whose actual value depends on their children. When the contents of
children change, their parents are automatically invalidated. The
next time an invalidated transform is accessed, it is recomputed to
reflect those changes. This invalidation/caching approach prevents
unnecessary recomputations of transforms, and contributes to better
interactive performance.
For example, here is a graph of the transform tree used to plot data
to the graph:
.. image:: ../_static/transforms.png
The framework can be used for both affine and non-affine
transformations. However, for speed, we want use the backend
renderers to perform affine transformations whenever possible.
Therefore, it is possible to perform just the affine or non-affine
part of a transformation on a set of data. The affine is always
assumed to occur after the non-affine. For any transform::
full transform == non-affine part + affine part
The backends are not expected to handle non-affine transformations
themselves.
"""
# Note: There are a number of places in the code where we use `np.min` or
# `np.minimum` instead of the builtin `min`, and likewise for `max`. This is
# done so that `nan`s are propagated, instead of being silently dropped.
import re
import weakref
import numpy as np
from numpy.linalg import inv
from matplotlib import cbook
from matplotlib._path import (
affine_transform, count_bboxes_overlapping_bbox, update_path_extents)
from .path import Path
DEBUG = False
def _indent_str(obj): # textwrap.indent(str(obj), 4) on Py3.
return re.sub("(^|\n)", r"\1 ", str(obj))
class TransformNode(object):
"""
:class:`TransformNode` is the base class for anything that
participates in the transform tree and needs to invalidate its
parents or be invalidated. This includes classes that are not
really transforms, such as bounding boxes, since some transforms
depend on bounding boxes to compute their values.
"""
_gid = 0
# Invalidation may affect only the affine part. If the
# invalidation was "affine-only", the _invalid member is set to
# INVALID_AFFINE_ONLY
INVALID_NON_AFFINE = 1
INVALID_AFFINE = 2
INVALID = INVALID_NON_AFFINE | INVALID_AFFINE
# Some metadata about the transform, used to determine whether an
# invalidation is affine-only
is_affine = False
is_bbox = False
pass_through = False
"""
If pass_through is True, all ancestors will always be
invalidated, even if 'self' is already invalid.
"""
def __init__(self, shorthand_name=None):
"""
Creates a new :class:`TransformNode`.
Parameters
----------
shorthand_name : str
A string representing the "name" of the transform. The name carries
no significance other than to improve the readability of
``str(transform)`` when DEBUG=True.
"""
self._parents = {}
# TransformNodes start out as invalid until their values are
# computed for the first time.
self._invalid = 1
self._shorthand_name = shorthand_name or ''
if DEBUG:
def __str__(self):
# either just return the name of this TransformNode, or its repr
return self._shorthand_name or repr(self)
def __getstate__(self):
# turn the dictionary with weak values into a normal dictionary
return {**self.__dict__,
'_parents': {k: v() for k, v in self._parents.items()}}
def __setstate__(self, data_dict):
self.__dict__ = data_dict
# turn the normal dictionary back into a dictionary with weak values
# The extra lambda is to provide a callback to remove dead
# weakrefs from the dictionary when garbage collection is done.
self._parents = {k: weakref.ref(v, lambda ref, sid=k,
target=self._parents:
target.pop(sid))
for k, v in self._parents.items() if v is not None}
def __copy__(self, *args):
raise NotImplementedError(
"TransformNode instances can not be copied. "
"Consider using frozen() instead.")
__deepcopy__ = __copy__
def invalidate(self):
"""
Invalidate this :class:`TransformNode` and triggers an
invalidation of its ancestors. Should be called any
time the transform changes.
"""
value = self.INVALID
if self.is_affine:
value = self.INVALID_AFFINE
return self._invalidate_internal(value, invalidating_node=self)
def _invalidate_internal(self, value, invalidating_node):
"""
Called by :meth:`invalidate` and subsequently ascends the transform
stack calling each TransformNode's _invalidate_internal method.
"""
# determine if this call will be an extension to the invalidation
# status. If not, then a shortcut means that we needn't invoke an
# invalidation up the transform stack as it will already have been
# invalidated.
# N.B This makes the invalidation sticky, once a transform has been
# invalidated as NON_AFFINE, then it will always be invalidated as
# NON_AFFINE even when triggered with a AFFINE_ONLY invalidation.
# In most cases this is not a problem (i.e. for interactive panning and
# zooming) and the only side effect will be on performance.
status_changed = self._invalid < value
if self.pass_through or status_changed:
self._invalid = value
for parent in list(self._parents.values()):
# Dereference the weak reference
parent = parent()
if parent is not None:
parent._invalidate_internal(
value=value, invalidating_node=self)
def set_children(self, *children):
"""
Set the children of the transform, to let the invalidation
system know which transforms can invalidate this transform.
Should be called from the constructor of any transforms that
depend on other transforms.
"""
# Parents are stored as weak references, so that if the
# parents are destroyed, references from the children won't
# keep them alive.
for child in children:
# Use weak references so this dictionary won't keep obsolete nodes
# alive; the callback deletes the dictionary entry. This is a
# performance improvement over using WeakValueDictionary.
ref = weakref.ref(self, lambda ref, sid=id(self),
target=child._parents: target.pop(sid))
child._parents[id(self)] = ref
if DEBUG:
_set_children = set_children
def set_children(self, *children):
self._set_children(*children)
self._children = children
set_children.__doc__ = _set_children.__doc__
def frozen(self):
"""
Returns a frozen copy of this transform node. The frozen copy
will not update when its children change. Useful for storing
a previously known state of a transform where
``copy.deepcopy()`` might normally be used.
"""
return self
if DEBUG:
def write_graphviz(self, fobj, highlight=[]):
"""
For debugging purposes.
Writes the transform tree rooted at 'self' to a graphviz "dot"
format file. This file can be run through the "dot" utility
to produce a graph of the transform tree.
Affine transforms are marked in blue. Bounding boxes are
marked in yellow.
*fobj*: A Python file-like object
Once the "dot" file has been created, it can be turned into a
png easily with::
$> dot -Tpng -o $OUTPUT_FILE $DOT_FILE
"""
seen = set()
def recurse(root):
if root in seen:
return
seen.add(root)
props = {}
label = root.__class__.__name__
if root._invalid:
label = '[%s]' % label
if root in highlight:
props['style'] = 'bold'
props['shape'] = 'box'
props['label'] = '"%s"' % label
props = ' '.join(map('{0[0]}={0[1]}'.format, props.items()))
fobj.write('%s [%s];\n' % (hash(root), props))
if hasattr(root, '_children'):
for child in root._children:
name = next((key for key, val in root.__dict__.items()
if val is child), '?')
fobj.write('"%s" -> "%s" [label="%s", fontsize=10];\n'
% (hash(root),
hash(child),
name))
recurse(child)
fobj.write("digraph G {\n")
recurse(self)
fobj.write("}\n")
class BboxBase(TransformNode):
"""
This is the base class of all bounding boxes, and provides
read-only access to its data. A mutable bounding box is provided
by the :class:`Bbox` class.
The canonical representation is as two points, with no
restrictions on their ordering. Convenience properties are
provided to get the left, bottom, right and top edges and width
and height, but these are not stored explicitly.
"""
is_bbox = True
is_affine = True
if DEBUG:
def _check(points):
if isinstance(points, np.ma.MaskedArray):
cbook._warn_external("Bbox bounds are a masked array.")
points = np.asarray(points)
if (points[1, 0] - points[0, 0] == 0 or
points[1, 1] - points[0, 1] == 0):
cbook._warn_external("Singular Bbox.")
_check = staticmethod(_check)
def frozen(self):
return Bbox(self.get_points().copy())
frozen.__doc__ = TransformNode.__doc__
def __array__(self, *args, **kwargs):
return self.get_points()
def is_unit(self):
"""Return whether this is the unit box (from (0, 0) to (1, 1))."""
return self.get_points().tolist() == [[0., 0.], [1., 1.]]
@property
def x0(self):
"""
The first of the pair of *x* coordinates that define the bounding box.
This is not guaranteed to be less than :attr:`x1` (for that, use
:attr:`xmin`).
"""
return self.get_points()[0, 0]
@property
def y0(self):
"""
The first of the pair of *y* coordinates that define the bounding box.
This is not guaranteed to be less than :attr:`y1` (for that, use
:attr:`ymin`).
"""
return self.get_points()[0, 1]
@property
def x1(self):
"""
The second of the pair of *x* coordinates that define the bounding box.
This is not guaranteed to be greater than :attr:`x0` (for that, use
:attr:`xmax`).
"""
return self.get_points()[1, 0]
@property
def y1(self):
"""
The second of the pair of *y* coordinates that define the bounding box.
This is not guaranteed to be greater than :attr:`y0` (for that, use
:attr:`ymax`).
"""
return self.get_points()[1, 1]
@property
def p0(self):
"""
The first pair of (*x*, *y*) coordinates that define the bounding box.
This is not guaranteed to be the bottom-left corner (for that, use
:attr:`min`).
"""
return self.get_points()[0]
@property
def p1(self):
"""
The second pair of (*x*, *y*) coordinates that define the bounding box.
This is not guaranteed to be the top-right corner (for that, use
:attr:`max`).
"""
return self.get_points()[1]
@property
def xmin(self):
"""The left edge of the bounding box."""
return np.min(self.get_points()[:, 0])
@property
def ymin(self):
"""The bottom edge of the bounding box."""
return np.min(self.get_points()[:, 1])
@property
def xmax(self):
"""The right edge of the bounding box."""
return np.max(self.get_points()[:, 0])
@property
def ymax(self):
"""The top edge of the bounding box."""
return np.max(self.get_points()[:, 1])
@property
def min(self):
"""The bottom-left corner of the bounding box."""
return np.min(self.get_points(), axis=0)
@property
def max(self):
"""The top-right corner of the bounding box."""
return np.max(self.get_points(), axis=0)
@property
def intervalx(self):
"""
The pair of *x* coordinates that define the bounding box.
This is not guaranteed to be sorted from left to right.
"""
return self.get_points()[:, 0]
@property
def intervaly(self):
"""
The pair of *y* coordinates that define the bounding box.
This is not guaranteed to be sorted from bottom to top.
"""
return self.get_points()[:, 1]
@property
def width(self):
"""The (signed) width of the bounding box."""
points = self.get_points()
return points[1, 0] - points[0, 0]
@property
def height(self):
"""The (signed) height of the bounding box."""
points = self.get_points()
return points[1, 1] - points[0, 1]
@property
def size(self):
"""The (signed) width and height of the bounding box."""
points = self.get_points()
return points[1] - points[0]
@property
def bounds(self):
"""Return (:attr:`x0`, :attr:`y0`, :attr:`width`, :attr:`height`)."""
(x0, y0), (x1, y1) = self.get_points()
return (x0, y0, x1 - x0, y1 - y0)
@property
def extents(self):
"""Return (:attr:`x0`, :attr:`y0`, :attr:`x1`, :attr:`y1`)."""
return self.get_points().flatten() # flatten returns a copy.
def get_points(self):
raise NotImplementedError
def containsx(self, x):
"""
Return whether *x* is in the closed (:attr:`x0`, :attr:`x1`) interval.
"""
x0, x1 = self.intervalx
return x0 <= x <= x1 or x0 >= x >= x1
def containsy(self, y):
"""
Return whether *y* is in the closed (:attr:`y0`, :attr:`y1`) interval.
"""
y0, y1 = self.intervaly
return y0 <= y <= y1 or y0 >= y >= y1
def contains(self, x, y):
"""
Return whether ``(x, y)`` is in the bounding box or on its edge.
"""
return self.containsx(x) and self.containsy(y)
def overlaps(self, other):
"""
Return whether this bounding box overlaps with the other bounding box.
Parameters
----------
other : BboxBase
"""
ax1, ay1, ax2, ay2 = self.extents
bx1, by1, bx2, by2 = other.extents
if ax2 < ax1:
ax2, ax1 = ax1, ax2
if ay2 < ay1:
ay2, ay1 = ay1, ay2
if bx2 < bx1:
bx2, bx1 = bx1, bx2
if by2 < by1:
by2, by1 = by1, by2
return ax1 <= bx2 and bx1 <= ax2 and ay1 <= by2 and by1 <= ay2
def fully_containsx(self, x):
"""
Return whether *x* is in the open (:attr:`x0`, :attr:`x1`) interval.
"""
x0, x1 = self.intervalx
return x0 < x < x1 or x0 > x > x1
def fully_containsy(self, y):
"""
Return whether *y* is in the open (:attr:`y0`, :attr:`y1`) interval.
"""
y0, y1 = self.intervaly
return y0 < y < y1 or y0 > y > y1
def fully_contains(self, x, y):
"""
Return whether ``x, y`` is in the bounding box, but not on its edge.
"""
return self.fully_containsx(x) and self.fully_containsy(y)
def fully_overlaps(self, other):
"""
Return whether this bounding box overlaps with the other bounding box,
not including the edges.
Parameters
----------
other : BboxBase
"""
ax1, ay1, ax2, ay2 = self.extents
bx1, by1, bx2, by2 = other.extents
if ax2 < ax1:
ax2, ax1 = ax1, ax2
if ay2 < ay1:
ay2, ay1 = ay1, ay2
if bx2 < bx1:
bx2, bx1 = bx1, bx2
if by2 < by1:
by2, by1 = by1, by2
return ax1 < bx2 and bx1 < ax2 and ay1 < by2 and by1 < ay2
def transformed(self, transform):
"""
Construct a `Bbox` by statically transforming this one by *transform*.
"""
pts = self.get_points()
ll, ul, lr = transform.transform(np.array([pts[0],
[pts[0, 0], pts[1, 1]], [pts[1, 0], pts[0, 1]]]))
return Bbox([ll, [lr[0], ul[1]]])
def inverse_transformed(self, transform):
"""
Construct a `Bbox` by statically transforming this one by the inverse
of *transform*.
"""
return self.transformed(transform.inverted())
coefs = {'C': (0.5, 0.5),
'SW': (0, 0),
'S': (0.5, 0),
'SE': (1.0, 0),
'E': (1.0, 0.5),
'NE': (1.0, 1.0),
'N': (0.5, 1.0),
'NW': (0, 1.0),
'W': (0, 0.5)}
def anchored(self, c, container=None):
"""
Return a copy of the :class:`Bbox`, shifted to position *c*
within a container.
Parameters
----------
c : (float, float) or str
May be either:
* A sequence (*cx*, *cy*) where *cx* and *cy* range from 0
to 1, where 0 is left or bottom and 1 is right or top
* a string:
- 'C' for centered
- 'S' for bottom-center
- 'SE' for bottom-left
- 'E' for left
- etc.
container : Bbox, optional
The box within which the :class:`Bbox` is positioned; it defaults
to the initial :class:`Bbox`.
"""
if container is None:
container = self
l, b, w, h = container.bounds
if isinstance(c, str):
cx, cy = self.coefs[c]
else:
cx, cy = c
L, B, W, H = self.bounds
return Bbox(self._points +
[(l + cx * (w - W)) - L,
(b + cy * (h - H)) - B])
def shrunk(self, mx, my):
"""
Return a copy of the :class:`Bbox`, shrunk by the factor *mx*
in the *x* direction and the factor *my* in the *y* direction.
The lower left corner of the box remains unchanged. Normally
*mx* and *my* will be less than 1, but this is not enforced.
"""
w, h = self.size
return Bbox([self._points[0],
self._points[0] + [mx * w, my * h]])
def shrunk_to_aspect(self, box_aspect, container=None, fig_aspect=1.0):
"""
Return a copy of the :class:`Bbox`, shrunk so that it is as
large as it can be while having the desired aspect ratio,
*box_aspect*. If the box coordinates are relative---that
is, fractions of a larger box such as a figure---then the
physical aspect ratio of that figure is specified with
*fig_aspect*, so that *box_aspect* can also be given as a
ratio of the absolute dimensions, not the relative dimensions.
"""
if box_aspect <= 0 or fig_aspect <= 0:
raise ValueError("'box_aspect' and 'fig_aspect' must be positive")
if container is None:
container = self
w, h = container.size
H = w * box_aspect / fig_aspect
if H <= h:
W = w
else:
W = h * fig_aspect / box_aspect
H = h
return Bbox([self._points[0],
self._points[0] + (W, H)])
def splitx(self, *args):
"""
Return a list of new `Bbox` objects formed by splitting the original
one with vertical lines at fractional positions given by *args*.
"""
xf = [0, *args, 1]
x0, y0, x1, y1 = self.extents
w = x1 - x0
return [Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]])
for xf0, xf1 in zip(xf[:-1], xf[1:])]
def splity(self, *args):
"""
Return a list of new `Bbox` objects formed by splitting the original
one with horizontal lines at fractional positions given by *args*.
"""
yf = [0, *args, 1]
x0, y0, x1, y1 = self.extents
h = y1 - y0
return [Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]])
for yf0, yf1 in zip(yf[:-1], yf[1:])]
def count_contains(self, vertices):
"""
Count the number of vertices contained in the :class:`Bbox`.
Any vertices with a non-finite x or y value are ignored.
Parameters
----------
vertices : Nx2 Numpy array.
"""
if len(vertices) == 0:
return 0
vertices = np.asarray(vertices)
with np.errstate(invalid='ignore'):
return (((self.min < vertices) &
(vertices < self.max)).all(axis=1).sum())
def count_overlaps(self, bboxes):
"""
Count the number of bounding boxes that overlap this one.
Parameters
----------
bboxes : sequence of :class:`BboxBase` objects
"""
return count_bboxes_overlapping_bbox(
self, np.atleast_3d([np.array(x) for x in bboxes]))
def expanded(self, sw, sh):
"""
Construct a `Bbox` by expanding this one around its center by the
factors *sw* and *sh*.
"""
width = self.width
height = self.height
deltaw = (sw * width - width) / 2.0
deltah = (sh * height - height) / 2.0
a = np.array([[-deltaw, -deltah], [deltaw, deltah]])
return Bbox(self._points + a)
def padded(self, p):
"""Construct a `Bbox` by padding this one on all four sides by *p*."""
points = self.get_points()
return Bbox(points + [[-p, -p], [p, p]])
def translated(self, tx, ty):
"""Construct a `Bbox` by translating this one by *tx* and *ty*."""
return Bbox(self._points + (tx, ty))
def corners(self):
"""
Return the corners of this rectangle as an array of points.
Specifically, this returns the array
``[[x0, y0], [x0, y1], [x1, y0], [x1, y1]]``.
"""
(x0, y0), (x1, y1) = self.get_points()
return np.array([[x0, y0], [x0, y1], [x1, y0], [x1, y1]])
def rotated(self, radians):
"""
Return a new bounding box that bounds a rotated version of
this bounding box by the given radians. The new bounding box
is still aligned with the axes, of course.
"""
corners = self.corners()
corners_rotated = Affine2D().rotate(radians).transform(corners)
bbox = Bbox.unit()
bbox.update_from_data_xy(corners_rotated, ignore=True)
return bbox
@staticmethod
def union(bboxes):
"""Return a `Bbox` that contains all of the given *bboxes*."""
if not len(bboxes):
raise ValueError("'bboxes' cannot be empty")
x0 = np.min([bbox.xmin for bbox in bboxes])
x1 = np.max([bbox.xmax for bbox in bboxes])
y0 = np.min([bbox.ymin for bbox in bboxes])
y1 = np.max([bbox.ymax for bbox in bboxes])
return Bbox([[x0, y0], [x1, y1]])
@staticmethod
def intersection(bbox1, bbox2):
"""
Return the intersection of *bbox1* and *bbox2* if they intersect, or
None if they don't.
"""
x0 = np.maximum(bbox1.xmin, bbox2.xmin)
x1 = np.minimum(bbox1.xmax, bbox2.xmax)
y0 = np.maximum(bbox1.ymin, bbox2.ymin)
y1 = np.minimum(bbox1.ymax, bbox2.ymax)
return Bbox([[x0, y0], [x1, y1]]) if x0 <= x1 and y0 <= y1 else None
class Bbox(BboxBase):
"""
A mutable bounding box.
"""
def __init__(self, points, **kwargs):
"""
Parameters
----------
points : ndarray
A 2x2 numpy array of the form ``[[x0, y0], [x1, y1]]``.
Notes
-----
If you need to create a :class:`Bbox` object from another form
of data, consider the static methods :meth:`unit`,
:meth:`from_bounds` and :meth:`from_extents`.
"""
BboxBase.__init__(self, **kwargs)
points = np.asarray(points, float)
if points.shape != (2, 2):
raise ValueError('Bbox points must be of the form '
'"[[x0, y0], [x1, y1]]".')
self._points = points
self._minpos = np.array([np.inf, np.inf])
self._ignore = True
# it is helpful in some contexts to know if the bbox is a
# default or has been mutated; we store the orig points to
# support the mutated methods
self._points_orig = self._points.copy()
if DEBUG:
___init__ = __init__
def __init__(self, points, **kwargs):
self._check(points)
self.___init__(points, **kwargs)
def invalidate(self):
self._check(self._points)
TransformNode.invalidate(self)
@staticmethod
def unit():
"""
(staticmethod) Create a new unit :class:`Bbox` from (0, 0) to
(1, 1).
"""
return Bbox(np.array([[0.0, 0.0], [1.0, 1.0]], float))
@staticmethod
def null():
"""
(staticmethod) Create a new null :class:`Bbox` from (inf, inf) to
(-inf, -inf).
"""
return Bbox(np.array([[np.inf, np.inf], [-np.inf, -np.inf]], float))
@staticmethod
def from_bounds(x0, y0, width, height):
"""
(staticmethod) Create a new :class:`Bbox` from *x0*, *y0*,
*width* and *height*.
*width* and *height* may be negative.
"""
return Bbox.from_extents(x0, y0, x0 + width, y0 + height)
@staticmethod
def from_extents(*args):
"""
(staticmethod) Create a new Bbox from *left*, *bottom*,
*right* and *top*.
The *y*-axis increases upwards.
"""
points = np.array(args, dtype=float).reshape(2, 2)
return Bbox(points)
def __format__(self, fmt):
return (
'Bbox(x0={0.x0:{1}}, y0={0.y0:{1}}, x1={0.x1:{1}}, y1={0.y1:{1}})'.
format(self, fmt))
def __str__(self):
return format(self, '')
def __repr__(self):
return 'Bbox([[{0.x0}, {0.y0}], [{0.x1}, {0.y1}]])'.format(self)
def ignore(self, value):
"""
Set whether the existing bounds of the box should be ignored
by subsequent calls to :meth:`update_from_data_xy`.
value : bool
- When ``True``, subsequent calls to :meth:`update_from_data_xy`
will ignore the existing bounds of the :class:`Bbox`.
- When ``False``, subsequent calls to :meth:`update_from_data_xy`
will include the existing bounds of the :class:`Bbox`.
"""
self._ignore = value
def update_from_path(self, path, ignore=None, updatex=True, updatey=True):
"""
Update the bounds of the :class:`Bbox` based on the passed in
data. After updating, the bounds will have positive *width*
and *height*; *x0* and *y0* will be the minimal values.
Parameters
----------
path : :class:`~matplotlib.path.Path`
ignore : bool, optional
- when ``True``, ignore the existing bounds of the :class:`Bbox`.
- when ``False``, include the existing bounds of the :class:`Bbox`.
- when ``None``, use the last value passed to :meth:`ignore`.
updatex, updatey : bool, optional
When ``True``, update the x/y values.
"""
if ignore is None:
ignore = self._ignore
if path.vertices.size == 0:
return
points, minpos, changed = update_path_extents(
path, None, self._points, self._minpos, ignore)
if changed:
self.invalidate()
if updatex:
self._points[:, 0] = points[:, 0]
self._minpos[0] = minpos[0]
if updatey:
self._points[:, 1] = points[:, 1]
self._minpos[1] = minpos[1]
def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True):
"""
Update the bounds of the :class:`Bbox` based on the passed in
data. After updating, the bounds will have positive *width*
and *height*; *x0* and *y0* will be the minimal values.
Parameters
----------
xy : ndarray
A numpy array of 2D points.
ignore : bool, optional
- When ``True``, ignore the existing bounds of the :class:`Bbox`.
- When ``False``, include the existing bounds of the :class:`Bbox`.
- When ``None``, use the last value passed to :meth:`ignore`.
updatex, updatey : bool, optional
When ``True``, update the x/y values.
"""
if len(xy) == 0:
return
path = Path(xy)
self.update_from_path(path, ignore=ignore,
updatex=updatex, updatey=updatey)
@BboxBase.x0.setter
def x0(self, val):
self._points[0, 0] = val
self.invalidate()
@BboxBase.y0.setter
def y0(self, val):
self._points[0, 1] = val
self.invalidate()
@BboxBase.x1.setter
def x1(self, val):
self._points[1, 0] = val
self.invalidate()
@BboxBase.y1.setter
def y1(self, val):
self._points[1, 1] = val
self.invalidate()
@BboxBase.p0.setter
def p0(self, val):
self._points[0] = val
self.invalidate()
@BboxBase.p1.setter
def p1(self, val):
self._points[1] = val
self.invalidate()
@BboxBase.intervalx.setter
def intervalx(self, interval):
self._points[:, 0] = interval
self.invalidate()
@BboxBase.intervaly.setter
def intervaly(self, interval):
self._points[:, 1] = interval
self.invalidate()
@BboxBase.bounds.setter
def bounds(self, bounds):
l, b, w, h = bounds
points = np.array([[l, b], [l + w, b + h]], float)
if np.any(self._points != points):
self._points = points
self.invalidate()
@property
def minpos(self):
return self._minpos
@property
def minposx(self):
return self._minpos[0]
@property
def minposy(self):
return self._minpos[1]
def get_points(self):
"""
Get the points of the bounding box directly as a numpy array
of the form: ``[[x0, y0], [x1, y1]]``.
"""
self._invalid = 0
return self._points
def set_points(self, points):
"""
Set the points of the bounding box directly from a numpy array
of the form: ``[[x0, y0], [x1, y1]]``. No error checking is
performed, as this method is mainly for internal use.
"""
if np.any(self._points != points):
self._points = points
self.invalidate()
def set(self, other):
"""
Set this bounding box from the "frozen" bounds of another
:class:`Bbox`.
"""
if np.any(self._points != other.get_points()):
self._points = other.get_points()
self.invalidate()
def mutated(self):
'Return whether the bbox has changed since init.'
return self.mutatedx() or self.mutatedy()
def mutatedx(self):
'Return whether the x-limits have changed since init.'
return (self._points[0, 0] != self._points_orig[0, 0] or
self._points[1, 0] != self._points_orig[1, 0])
def mutatedy(self):
'Return whether the y-limits have changed since init.'
return (self._points[0, 1] != self._points_orig[0, 1] or
self._points[1, 1] != self._points_orig[1, 1])
class TransformedBbox(BboxBase):
"""
A :class:`Bbox` that is automatically transformed by a given
transform. When either the child bounding box or transform
changes, the bounds of this bbox will update accordingly.
"""
def __init__(self, bbox, transform, **kwargs):
"""
Parameters
----------
bbox : :class:`Bbox`
transform : :class:`Transform`
"""
if not bbox.is_bbox:
raise ValueError("'bbox' is not a bbox")
if not isinstance(transform, Transform):
raise ValueError("'transform' must be an instance of "
"'matplotlib.transform.Transform'")
if transform.input_dims != 2 or transform.output_dims != 2:
raise ValueError(
"The input and output dimensions of 'transform' must be 2")
BboxBase.__init__(self, **kwargs)
self._bbox = bbox
self._transform = transform
self.set_children(bbox, transform)
self._points = None
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._bbox),
_indent_str(self._transform)))
def get_points(self):
# docstring inherited
if self._invalid:
p = self._bbox.get_points()
# Transform all four points, then make a new bounding box
# from the result, taking care to make the orientation the
# same.
points = self._transform.transform(
[[p[0, 0], p[0, 1]],
[p[1, 0], p[0, 1]],
[p[0, 0], p[1, 1]],
[p[1, 0], p[1, 1]]])
points = np.ma.filled(points, 0.0)
xs = min(points[:, 0]), max(points[:, 0])
if p[0, 0] > p[1, 0]:
xs = xs[::-1]
ys = min(points[:, 1]), max(points[:, 1])
if p[0, 1] > p[1, 1]:
ys = ys[::-1]
self._points = np.array([
[xs[0], ys[0]],
[xs[1], ys[1]]
])
self._invalid = 0
return self._points
if DEBUG:
_get_points = get_points
def get_points(self):
points = self._get_points()
self._check(points)
return points
class LockableBbox(BboxBase):
"""
A :class:`Bbox` where some elements may be locked at certain values.
When the child bounding box changes, the bounds of this bbox will update
accordingly with the exception of the locked elements.
"""
def __init__(self, bbox, x0=None, y0=None, x1=None, y1=None, **kwargs):
"""
Parameters
----------
bbox : Bbox
The child bounding box to wrap.
x0 : float or None
The locked value for x0, or None to leave unlocked.
y0 : float or None
The locked value for y0, or None to leave unlocked.
x1 : float or None
The locked value for x1, or None to leave unlocked.
y1 : float or None
The locked value for y1, or None to leave unlocked.
"""
if not bbox.is_bbox:
raise ValueError("'bbox' is not a bbox")
BboxBase.__init__(self, **kwargs)
self._bbox = bbox
self.set_children(bbox)
self._points = None
fp = [x0, y0, x1, y1]
mask = [val is None for val in fp]
self._locked_points = np.ma.array(fp, float, mask=mask).reshape((2, 2))
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._bbox),
_indent_str(self._locked_points)))
def get_points(self):
# docstring inherited
if self._invalid:
points = self._bbox.get_points()
self._points = np.where(self._locked_points.mask,
points,
self._locked_points)
self._invalid = 0
return self._points
if DEBUG:
_get_points = get_points
def get_points(self):
points = self._get_points()
self._check(points)
return points
@property
def locked_x0(self):
"""
float or None: The value used for the locked x0.
"""
if self._locked_points.mask[0, 0]:
return None
else:
return self._locked_points[0, 0]
@locked_x0.setter
def locked_x0(self, x0):
self._locked_points.mask[0, 0] = x0 is None
self._locked_points.data[0, 0] = x0
self.invalidate()
@property
def locked_y0(self):
"""
float or None: The value used for the locked y0.
"""
if self._locked_points.mask[0, 1]:
return None
else:
return self._locked_points[0, 1]
@locked_y0.setter
def locked_y0(self, y0):
self._locked_points.mask[0, 1] = y0 is None
self._locked_points.data[0, 1] = y0
self.invalidate()
@property
def locked_x1(self):
"""
float or None: The value used for the locked x1.
"""
if self._locked_points.mask[1, 0]:
return None
else:
return self._locked_points[1, 0]
@locked_x1.setter
def locked_x1(self, x1):
self._locked_points.mask[1, 0] = x1 is None
self._locked_points.data[1, 0] = x1
self.invalidate()
@property
def locked_y1(self):
"""
float or None: The value used for the locked y1.
"""
if self._locked_points.mask[1, 1]:
return None
else:
return self._locked_points[1, 1]
@locked_y1.setter
def locked_y1(self, y1):
self._locked_points.mask[1, 1] = y1 is None
self._locked_points.data[1, 1] = y1
self.invalidate()
class Transform(TransformNode):
"""
The base class of all :class:`TransformNode` instances that
actually perform a transformation.
All non-affine transformations should be subclasses of this class.
New affine transformations should be subclasses of
:class:`Affine2D`.
Subclasses of this class should override the following members (at
minimum):
- :attr:`input_dims`
- :attr:`output_dims`
- :meth:`transform`
- :attr:`is_separable`
- :attr:`has_inverse`
- :meth:`inverted` (if :attr:`has_inverse` is True)
If the transform needs to do something non-standard with
:class:`matplotlib.path.Path` objects, such as adding curves
where there were once line segments, it should override:
- :meth:`transform_path`
"""
input_dims = None
"""
The number of input dimensions of this transform.
Must be overridden (with integers) in the subclass.
"""
output_dims = None
"""
The number of output dimensions of this transform.
Must be overridden (with integers) in the subclass.
"""
has_inverse = False
"""True if this transform has a corresponding inverse transform."""
is_separable = False
"""True if this transform is separable in the x- and y- dimensions."""
def __add__(self, other):
"""
Composes two transforms together such that *self* is followed
by *other*.
"""
if isinstance(other, Transform):
return composite_transform_factory(self, other)
raise TypeError(
"Can not add Transform to object of type '%s'" % type(other))
def __radd__(self, other):
"""
Composes two transforms together such that *self* is followed
by *other*.
"""
if isinstance(other, Transform):
return composite_transform_factory(other, self)
raise TypeError(
"Can not add Transform to object of type '%s'" % type(other))
# Equality is based on object identity for `Transform`s (so we don't
# override `__eq__`), but some subclasses, such as TransformWrapper &
# AffineBase, override this behavior.
def _iter_break_from_left_to_right(self):
"""
Returns an iterator breaking down this transform stack from left to
right recursively. If self == ((A, N), A) then the result will be an
iterator which yields I : ((A, N), A), followed by A : (N, A),
followed by (A, N) : (A), but not ((A, N), A) : I.
This is equivalent to flattening the stack then yielding
``flat_stack[:i], flat_stack[i:]`` where i=0..(n-1).
"""
yield IdentityTransform(), self
@property
def depth(self):
"""
Returns the number of transforms which have been chained
together to form this Transform instance.
.. note::
For the special case of a Composite transform, the maximum depth
of the two is returned.
"""
return 1
def contains_branch(self, other):
"""
Return whether the given transform is a sub-tree of this transform.
This routine uses transform equality to identify sub-trees, therefore
in many situations it is object id which will be used.
For the case where the given transform represents the whole
of this transform, returns True.
"""
if self.depth < other.depth:
return False
# check that a subtree is equal to other (starting from self)
for _, sub_tree in self._iter_break_from_left_to_right():
if sub_tree == other:
return True
return False
def contains_branch_seperately(self, other_transform):
"""
Returns whether the given branch is a sub-tree of this transform on
each separate dimension.
A common use for this method is to identify if a transform is a blended
transform containing an axes' data transform. e.g.::
x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)
"""
if self.output_dims != 2:
raise ValueError('contains_branch_seperately only supports '
'transforms with 2 output dimensions')
# for a non-blended transform each separate dimension is the same, so
# just return the appropriate shape.
return [self.contains_branch(other_transform)] * 2
def __sub__(self, other):
"""
Returns a transform stack which goes all the way down self's transform
stack, and then ascends back up other's stack. If it can, this is
optimised::
# normally
A - B == a + b.inverted()
# sometimes, when A contains the tree B there is no need to
# descend all the way down to the base of A (via B), instead we
# can just stop at B.
(A + B) - (B)^-1 == A
# similarly, when B contains tree A, we can avoid descending A at
# all, basically:
A - (A + B) == ((B + A) - A).inverted() or B^-1
For clarity, the result of ``(A + B) - B + B == (A + B)``.
"""
# we only know how to do this operation if other is a Transform.
if not isinstance(other, Transform):
return NotImplemented
for remainder, sub_tree in self._iter_break_from_left_to_right():
if sub_tree == other:
return remainder
for remainder, sub_tree in other._iter_break_from_left_to_right():
if sub_tree == self:
if not remainder.has_inverse:
raise ValueError(
"The shortcut cannot be computed since 'other' "
"includes a non-invertible component")
return remainder.inverted()
# if we have got this far, then there was no shortcut possible
if other.has_inverse:
return self + other.inverted()
else:
raise ValueError('It is not possible to compute transA - transB '
'since transB cannot be inverted and there is no '
'shortcut possible.')
def __array__(self, *args, **kwargs):
"""
Array interface to get at this Transform's affine matrix.
"""
return self.get_affine().get_matrix()
def transform(self, values):
"""
Performs the transformation on the given array of values.
Accepts a numpy array of shape (N x :attr:`input_dims`) and
returns a numpy array of shape (N x :attr:`output_dims`).
Alternatively, accepts a numpy array of length :attr:`input_dims`
and returns a numpy array of length :attr:`output_dims`.
"""
# Ensure that values is a 2d array (but remember whether
# we started with a 1d or 2d array).
values = np.asanyarray(values)
ndim = values.ndim
values = values.reshape((-1, self.input_dims))
# Transform the values
res = self.transform_affine(self.transform_non_affine(values))
# Convert the result back to the shape of the input values.
if ndim == 0:
assert not np.ma.is_masked(res) # just to be on the safe side
return res[0, 0]
if ndim == 1:
return res.reshape(-1)
elif ndim == 2:
return res
raise ValueError(
"Input values must have shape (N x {dims}) "
"or ({dims}).".format(dims=self.input_dims))
def transform_affine(self, values):
"""
Performs only the affine part of this transformation on the
given array of values.
``transform(values)`` is always equivalent to
``transform_affine(transform_non_affine(values))``.
In non-affine transformations, this is generally a no-op. In
affine transformations, this is equivalent to
``transform(values)``.
Accepts a numpy array of shape (N x :attr:`input_dims`) and
returns a numpy array of shape (N x :attr:`output_dims`).
Alternatively, accepts a numpy array of length :attr:`input_dims`
and returns a numpy array of length :attr:`output_dims`.
"""
return self.get_affine().transform(values)
def transform_non_affine(self, values):
"""
Performs only the non-affine part of the transformation.
``transform(values)`` is always equivalent to
``transform_affine(transform_non_affine(values))``.
In non-affine transformations, this is generally equivalent to
``transform(values)``. In affine transformations, this is
always a no-op.
Accepts a numpy array of shape (N x :attr:`input_dims`) and
returns a numpy array of shape (N x :attr:`output_dims`).
Alternatively, accepts a numpy array of length :attr:`input_dims`
and returns a numpy array of length :attr:`output_dims`.
"""
return values
def transform_bbox(self, bbox):
"""
Transform the given bounding box.
Note, for smarter transforms including caching (a common
requirement for matplotlib figures), see :class:`TransformedBbox`.
"""
return Bbox(self.transform(bbox.get_points()))
def get_affine(self):
"""
Get the affine part of this transform.
"""
return IdentityTransform()
def get_matrix(self):
"""
Get the Affine transformation array for the affine part
of this transform.
"""
return self.get_affine().get_matrix()
def transform_point(self, point):
"""
A convenience function that returns the transformed copy of a
single point.
The point is given as a sequence of length :attr:`input_dims`.
The transformed point is returned as a sequence of length
:attr:`output_dims`.
"""
if len(point) != self.input_dims:
raise ValueError("The length of 'point' must be 'self.input_dims'")
return self.transform(np.asarray([point]))[0]
def transform_path(self, path):
"""
Returns a transformed path.
*path*: a :class:`~matplotlib.path.Path` instance.
In some cases, this transform may insert curves into the path
that began as line segments.
"""
return self.transform_path_affine(self.transform_path_non_affine(path))
def transform_path_affine(self, path):
"""
Returns a path, transformed only by the affine part of
this transform.
*path*: a :class:`~matplotlib.path.Path` instance.
``transform_path(path)`` is equivalent to
``transform_path_affine(transform_path_non_affine(values))``.
"""
return self.get_affine().transform_path_affine(path)
def transform_path_non_affine(self, path):
"""
Returns a path, transformed only by the non-affine
part of this transform.
*path*: a :class:`~matplotlib.path.Path` instance.
``transform_path(path)`` is equivalent to
``transform_path_affine(transform_path_non_affine(values))``.
"""
x = self.transform_non_affine(path.vertices)
return Path._fast_from_codes_and_verts(x, path.codes, path)
def transform_angles(self, angles, pts, radians=False, pushoff=1e-5):
"""
Transforms a set of angles anchored at specific locations.
Parameters
----------
angles : (N,) array-like
The angles to transform.
pts : (N, 2) array-like
The points where the angles are anchored.
radians : bool, default: False
Whether *angles* are radians or degrees.
pushoff : float
For each point in *pts* and angle in *angles*, the transformed
angle is computed by transforming a segment of length *pushoff*
starting at that point and making that angle relative to the
horizontal axis, and measuring the angle between the horizontal
axis and the transformed segment.
Returns
-------
transformed_angles : (N,) array
"""
# Must be 2D
if self.input_dims != 2 or self.output_dims != 2:
raise NotImplementedError('Only defined in 2D')
if pts.shape[1] != 2:
raise ValueError("'pts' must be array with 2 columns for x,y")
if angles.ndim != 1 or angles.shape[0] != pts.shape[0]:
raise ValueError("'angles' must be a column vector and have same "
"number of rows as 'pts'")
# Convert to radians if desired
if not radians:
angles = angles / 180.0 * np.pi
# Move a short distance away
pts2 = pts + pushoff * np.c_[np.cos(angles), np.sin(angles)]
# Transform both sets of points
tpts = self.transform(pts)
tpts2 = self.transform(pts2)
# Calculate transformed angles
d = tpts2 - tpts
a = np.arctan2(d[:, 1], d[:, 0])
# Convert back to degrees if desired
if not radians:
a = np.rad2deg(a)
return a
def inverted(self):
"""
Return the corresponding inverse transformation.
The return value of this method should be treated as
temporary. An update to *self* does not cause a corresponding
update to its inverted copy.
``x === self.inverted().transform(self.transform(x))``
"""
raise NotImplementedError()
class TransformWrapper(Transform):
"""
A helper class that holds a single child transform and acts
equivalently to it.
This is useful if a node of the transform tree must be replaced at
run time with a transform of a different type. This class allows
that replacement to correctly trigger invalidation.
Note that :class:`TransformWrapper` instances must have the same
input and output dimensions during their entire lifetime, so the
child transform may only be replaced with another child transform
of the same dimensions.
"""
pass_through = True
def __init__(self, child):
"""
*child*: A class:`Transform` instance. This child may later
be replaced with :meth:`set`.
"""
if not isinstance(child, Transform):
raise ValueError("'child' must be an instance of "
"'matplotlib.transform.Transform'")
self._init(child)
self.set_children(child)
def _init(self, child):
Transform.__init__(self)
self.input_dims = child.input_dims
self.output_dims = child.output_dims
self._set(child)
self._invalid = 0
def __eq__(self, other):
return self._child.__eq__(other)
def __str__(self):
return ("{}(\n"
"{})"
.format(type(self).__name__,
_indent_str(self._child)))
def frozen(self):
# docstring inherited
return self._child.frozen()
def _set(self, child):
self._child = child
self.transform = child.transform
self.transform_affine = child.transform_affine
self.transform_non_affine = child.transform_non_affine
self.transform_path = child.transform_path
self.transform_path_affine = child.transform_path_affine
self.transform_path_non_affine = child.transform_path_non_affine
self.get_affine = child.get_affine
self.inverted = child.inverted
self.get_matrix = child.get_matrix
# note we do not wrap other properties here since the transform's
# child can be changed with WrappedTransform.set and so checking
# is_affine and other such properties may be dangerous.
def set(self, child):
"""
Replace the current child of this transform with another one.
The new child must have the same number of input and output
dimensions as the current child.
"""
if (child.input_dims != self.input_dims or
child.output_dims != self.output_dims):
raise ValueError(
"The new child must have the same number of input and output "
"dimensions as the current child")
self.set_children(child)
self._set(child)
self._invalid = 0
self.invalidate()
self._invalid = 0
is_affine = property(lambda self: self._child.is_affine)
is_separable = property(lambda self: self._child.is_separable)
has_inverse = property(lambda self: self._child.has_inverse)
class AffineBase(Transform):
"""
The base class of all affine transformations of any number of
dimensions.
"""
is_affine = True
def __init__(self, *args, **kwargs):
Transform.__init__(self, *args, **kwargs)
self._inverted = None
def __array__(self, *args, **kwargs):
# optimises the access of the transform matrix vs the superclass
return self.get_matrix()
def __eq__(self, other):
if getattr(other, "is_affine", False):
return np.all(self.get_matrix() == other.get_matrix())
return NotImplemented
def transform(self, values):
# docstring inherited
return self.transform_affine(values)
def transform_affine(self, values):
# docstring inherited
raise NotImplementedError('Affine subclasses should override this '
'method.')
def transform_non_affine(self, points):
# docstring inherited
return points
def transform_path(self, path):
# docstring inherited
return self.transform_path_affine(path)
def transform_path_affine(self, path):
# docstring inherited
return Path(self.transform_affine(path.vertices),
path.codes, path._interpolation_steps)
def transform_path_non_affine(self, path):
# docstring inherited
return path
def get_affine(self):
# docstring inherited
return self
class Affine2DBase(AffineBase):
"""
The base class of all 2D affine transformations.
2D affine transformations are performed using a 3x3 numpy array::
a c e
b d f
0 0 1
This class provides the read-only interface. For a mutable 2D
affine transformation, use :class:`Affine2D`.
Subclasses of this class will generally only need to override a
constructor and :meth:`get_matrix` that generates a custom 3x3 matrix.
"""
has_inverse = True
input_dims = 2
output_dims = 2
def frozen(self):
# docstring inherited
return Affine2D(self.get_matrix().copy())
@property
def is_separable(self):
mtx = self.get_matrix()
return mtx[0, 1] == mtx[1, 0] == 0.0
def to_values(self):
"""
Return the values of the matrix as an ``(a, b, c, d, e, f)`` tuple.
"""
mtx = self.get_matrix()
return tuple(mtx[:2].swapaxes(0, 1).flat)
@staticmethod
def matrix_from_values(a, b, c, d, e, f):
"""
(staticmethod) Create a new transformation matrix as a 3x3
numpy array of the form::
a c e
b d f
0 0 1
"""
return np.array([[a, c, e], [b, d, f], [0.0, 0.0, 1.0]], float)
def transform_affine(self, points):
mtx = self.get_matrix()
if isinstance(points, np.ma.MaskedArray):
tpoints = affine_transform(points.data, mtx)
return np.ma.MaskedArray(tpoints, mask=np.ma.getmask(points))
return affine_transform(points, mtx)
def transform_point(self, point):
# docstring inherited
mtx = self.get_matrix()
return affine_transform([point], mtx)[0]
if DEBUG:
_transform_affine = transform_affine
def transform_affine(self, points):
# docstring inherited
# The major speed trap here is just converting to the
# points to an array in the first place. If we can use
# more arrays upstream, that should help here.
if not isinstance(points, (np.ma.MaskedArray, np.ndarray)):
cbook._warn_external(
f'A non-numpy array of type {type(points)} was passed in '
f'for transformation, which results in poor performance.')
return self._transform_affine(points)
def inverted(self):
# docstring inherited
if self._inverted is None or self._invalid:
mtx = self.get_matrix()
shorthand_name = None
if self._shorthand_name:
shorthand_name = '(%s)-1' % self._shorthand_name
self._inverted = Affine2D(inv(mtx), shorthand_name=shorthand_name)
self._invalid = 0
return self._inverted
class Affine2D(Affine2DBase):
"""
A mutable 2D affine transformation.
"""
def __init__(self, matrix=None, **kwargs):
"""
Initialize an Affine transform from a 3x3 numpy float array::
a c e
b d f
0 0 1
If *matrix* is None, initialize with the identity transform.
"""
Affine2DBase.__init__(self, **kwargs)
if matrix is None:
# A bit faster than np.identity(3).
matrix = IdentityTransform._mtx.copy()
self._mtx = matrix
self._invalid = 0
def __str__(self):
return ("{}(\n"
"{})"
.format(type(self).__name__,
_indent_str(self._mtx)))
@staticmethod
def from_values(a, b, c, d, e, f):
"""
(staticmethod) Create a new Affine2D instance from the given
values::
a c e
b d f
0 0 1
.
"""
return Affine2D(
np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], float).reshape((3, 3)))
def get_matrix(self):
"""
Get the underlying transformation matrix as a 3x3 numpy array::
a c e
b d f
0 0 1
.
"""
self._invalid = 0
return self._mtx
def set_matrix(self, mtx):
"""
Set the underlying transformation matrix from a 3x3 numpy array::
a c e
b d f
0 0 1
.
"""
self._mtx = mtx
self.invalidate()
def set(self, other):
"""
Set this transformation from the frozen copy of another
:class:`Affine2DBase` object.
"""
if not isinstance(other, Affine2DBase):
raise ValueError("'other' must be an instance of "
"'matplotlib.transform.Affine2DBase'")
self._mtx = other.get_matrix()
self.invalidate()
@staticmethod
def identity():
"""
(staticmethod) Return a new :class:`Affine2D` object that is
the identity transform.
Unless this transform will be mutated later on, consider using
the faster :class:`IdentityTransform` class instead.
"""
return Affine2D()
def clear(self):
"""
Reset the underlying matrix to the identity transform.
"""
# A bit faster than np.identity(3).
self._mtx = IdentityTransform._mtx.copy()
self.invalidate()
return self
def rotate(self, theta):
"""
Add a rotation (in radians) to this transform in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
a = np.cos(theta)
b = np.sin(theta)
rotate_mtx = np.array([[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]],
float)
self._mtx = np.dot(rotate_mtx, self._mtx)
self.invalidate()
return self
def rotate_deg(self, degrees):
"""
Add a rotation (in degrees) to this transform in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.rotate(np.deg2rad(degrees))
def rotate_around(self, x, y, theta):
"""
Add a rotation (in radians) around the point (x, y) in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.translate(-x, -y).rotate(theta).translate(x, y)
def rotate_deg_around(self, x, y, degrees):
"""
Add a rotation (in degrees) around the point (x, y) in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
# Cast to float to avoid wraparound issues with uint8's
x, y = float(x), float(y)
return self.translate(-x, -y).rotate_deg(degrees).translate(x, y)
def translate(self, tx, ty):
"""
Adds a translation in place.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
translate_mtx = np.array(
[[1.0, 0.0, tx], [0.0, 1.0, ty], [0.0, 0.0, 1.0]], float)
self._mtx = np.dot(translate_mtx, self._mtx)
self.invalidate()
return self
def scale(self, sx, sy=None):
"""
Adds a scale in place.
If *sy* is None, the same scale is applied in both the *x*- and
*y*-directions.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
if sy is None:
sy = sx
scale_mtx = np.array(
[[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1.0]], float)
self._mtx = np.dot(scale_mtx, self._mtx)
self.invalidate()
return self
def skew(self, xShear, yShear):
"""
Adds a skew in place.
*xShear* and *yShear* are the shear angles along the *x*- and
*y*-axes, respectively, in radians.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
rotX = np.tan(xShear)
rotY = np.tan(yShear)
skew_mtx = np.array(
[[1.0, rotX, 0.0], [rotY, 1.0, 0.0], [0.0, 0.0, 1.0]], float)
self._mtx = np.dot(skew_mtx, self._mtx)
self.invalidate()
return self
def skew_deg(self, xShear, yShear):
"""
Adds a skew in place.
*xShear* and *yShear* are the shear angles along the *x*- and
*y*-axes, respectively, in degrees.
Returns *self*, so this method can easily be chained with more
calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate`
and :meth:`scale`.
"""
return self.skew(np.deg2rad(xShear), np.deg2rad(yShear))
class IdentityTransform(Affine2DBase):
"""
A special class that does one thing, the identity transform, in a
fast way.
"""
_mtx = np.identity(3)
def frozen(self):
# docstring inherited
return self
def __str__(self):
return ("{}()"
.format(type(self).__name__))
def get_matrix(self):
# docstring inherited
return self._mtx
def transform(self, points):
# docstring inherited
return np.asanyarray(points)
def transform_affine(self, points):
# docstring inherited
return np.asanyarray(points)
def transform_non_affine(self, points):
# docstring inherited
return np.asanyarray(points)
def transform_path(self, path):
# docstring inherited
return path
def transform_path_affine(self, path):
# docstring inherited
return path
def transform_path_non_affine(self, path):
# docstring inherited
return path
def get_affine(self):
# docstring inherited
return self
def inverted(self):
# docstring inherited
return self
class BlendedGenericTransform(Transform):
"""
A "blended" transform uses one transform for the *x*-direction, and
another transform for the *y*-direction.
This "generic" version can handle any given child transform in the
*x*- and *y*-directions.
"""
input_dims = 2
output_dims = 2
is_separable = True
pass_through = True
def __init__(self, x_transform, y_transform, **kwargs):
"""
Create a new "blended" transform using *x_transform* to
transform the *x*-axis and *y_transform* to transform the
*y*-axis.
You will generally not call this constructor directly but use
the :func:`blended_transform_factory` function instead, which
can determine automatically which kind of blended transform to
create.
"""
# Here we ask: "Does it blend?"
Transform.__init__(self, **kwargs)
self._x = x_transform
self._y = y_transform
self.set_children(x_transform, y_transform)
self._affine = None
def __eq__(self, other):
# Note, this is an exact copy of BlendedAffine2D.__eq__
if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
return (self._x == other._x) and (self._y == other._y)
elif self._x == self._y:
return self._x == other
else:
return NotImplemented
def contains_branch_seperately(self, transform):
# Note, this is an exact copy of BlendedAffine2D.contains_branch_seperately
return self._x.contains_branch(transform), self._y.contains_branch(transform)
@property
def depth(self):
return max(self._x.depth, self._y.depth)
def contains_branch(self, other):
# a blended transform cannot possibly contain a branch from two different transforms.
return False
is_affine = property(lambda self: self._x.is_affine and self._y.is_affine)
has_inverse = property(
lambda self: self._x.has_inverse and self._y.has_inverse)
def frozen(self):
# docstring inherited
return blended_transform_factory(self._x.frozen(), self._y.frozen())
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._x),
_indent_str(self._y)))
def transform_non_affine(self, points):
# docstring inherited
if self._x.is_affine and self._y.is_affine:
return points
x = self._x
y = self._y
if x == y and x.input_dims == 2:
return x.transform_non_affine(points)
if x.input_dims == 2:
x_points = x.transform_non_affine(points)[:, 0:1]
else:
x_points = x.transform_non_affine(points[:, 0])
x_points = x_points.reshape((len(x_points), 1))
if y.input_dims == 2:
y_points = y.transform_non_affine(points)[:, 1:]
else:
y_points = y.transform_non_affine(points[:, 1])
y_points = y_points.reshape((len(y_points), 1))
if (isinstance(x_points, np.ma.MaskedArray) or
isinstance(y_points, np.ma.MaskedArray)):
return np.ma.concatenate((x_points, y_points), 1)
else:
return np.concatenate((x_points, y_points), 1)
def inverted(self):
# docstring inherited
return BlendedGenericTransform(self._x.inverted(), self._y.inverted())
def get_affine(self):
# docstring inherited
if self._invalid or self._affine is None:
if self._x == self._y:
self._affine = self._x.get_affine()
else:
x_mtx = self._x.get_affine().get_matrix()
y_mtx = self._y.get_affine().get_matrix()
# This works because we already know the transforms are
# separable, though normally one would want to set b and
# c to zero.
mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]))
self._affine = Affine2D(mtx)
self._invalid = 0
return self._affine
class BlendedAffine2D(Affine2DBase):
"""
A "blended" transform uses one transform for the *x*-direction, and
another transform for the *y*-direction.
This version is an optimization for the case where both child
transforms are of type :class:`Affine2DBase`.
"""
is_separable = True
def __init__(self, x_transform, y_transform, **kwargs):
"""
Create a new "blended" transform using *x_transform* to
transform the *x*-axis and *y_transform* to transform the
*y*-axis.
Both *x_transform* and *y_transform* must be 2D affine
transforms.
You will generally not call this constructor directly but use
the :func:`blended_transform_factory` function instead, which
can determine automatically which kind of blended transform to
create.
"""
is_affine = x_transform.is_affine and y_transform.is_affine
is_separable = x_transform.is_separable and y_transform.is_separable
is_correct = is_affine and is_separable
if not is_correct:
raise ValueError("Both *x_transform* and *y_transform* must be 2D "
"affine transforms")
Transform.__init__(self, **kwargs)
self._x = x_transform
self._y = y_transform
self.set_children(x_transform, y_transform)
Affine2DBase.__init__(self)
self._mtx = None
def __eq__(self, other):
# Note, this is an exact copy of BlendedGenericTransform.__eq__
if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)):
return (self._x == other._x) and (self._y == other._y)
elif self._x == self._y:
return self._x == other
else:
return NotImplemented
def contains_branch_seperately(self, transform):
# Note, this is an exact copy of BlendedTransform.contains_branch_seperately
return self._x.contains_branch(transform), self._y.contains_branch(transform)
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._x),
_indent_str(self._y)))
def get_matrix(self):
# docstring inherited
if self._invalid:
if self._x == self._y:
self._mtx = self._x.get_matrix()
else:
x_mtx = self._x.get_matrix()
y_mtx = self._y.get_matrix()
# This works because we already know the transforms are
# separable, though normally one would want to set b and
# c to zero.
self._mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0]))
self._inverted = None
self._invalid = 0
return self._mtx
def blended_transform_factory(x_transform, y_transform):
"""
Create a new "blended" transform using *x_transform* to transform
the *x*-axis and *y_transform* to transform the *y*-axis.
A faster version of the blended transform is returned for the case
where both child transforms are affine.
"""
if (isinstance(x_transform, Affine2DBase)
and isinstance(y_transform, Affine2DBase)):
return BlendedAffine2D(x_transform, y_transform)
return BlendedGenericTransform(x_transform, y_transform)
class CompositeGenericTransform(Transform):
"""
A composite transform formed by applying transform *a* then
transform *b*.
This "generic" version can handle any two arbitrary
transformations.
"""
pass_through = True
def __init__(self, a, b, **kwargs):
"""
Create a new composite transform that is the result of
applying transform *a* then transform *b*.
You will generally not call this constructor directly but use
the :func:`composite_transform_factory` function instead,
which can automatically choose the best kind of composite
transform instance to create.
"""
if a.output_dims != b.input_dims:
raise ValueError("The output dimension of 'a' must be equal to "
"the input dimensions of 'b'")
self.input_dims = a.input_dims
self.output_dims = b.output_dims
Transform.__init__(self, **kwargs)
self._a = a
self._b = b
self.set_children(a, b)
def frozen(self):
# docstring inherited
self._invalid = 0
frozen = composite_transform_factory(self._a.frozen(), self._b.frozen())
if not isinstance(frozen, CompositeGenericTransform):
return frozen.frozen()
return frozen
def _invalidate_internal(self, value, invalidating_node):
# In some cases for a composite transform, an invalidating call to AFFINE_ONLY needs
# to be extended to invalidate the NON_AFFINE part too. These cases are when the right
# hand transform is non-affine and either:
# (a) the left hand transform is non affine
# (b) it is the left hand node which has triggered the invalidation
if value == Transform.INVALID_AFFINE \
and not self._b.is_affine \
and (not self._a.is_affine or invalidating_node is self._a):
value = Transform.INVALID
Transform._invalidate_internal(self, value=value,
invalidating_node=invalidating_node)
def __eq__(self, other):
if isinstance(other, (CompositeGenericTransform, CompositeAffine2D)):
return self is other or (self._a == other._a
and self._b == other._b)
else:
return False
def _iter_break_from_left_to_right(self):
for left, right in self._a._iter_break_from_left_to_right():
yield left, right + self._b
for left, right in self._b._iter_break_from_left_to_right():
yield self._a + left, right
depth = property(lambda self: self._a.depth + self._b.depth)
is_affine = property(lambda self: self._a.is_affine and self._b.is_affine)
is_separable = property(
lambda self: self._a.is_separable and self._b.is_separable)
has_inverse = property(
lambda self: self._a.has_inverse and self._b.has_inverse)
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._a),
_indent_str(self._b)))
def transform_affine(self, points):
# docstring inherited
return self.get_affine().transform(points)
def transform_non_affine(self, points):
# docstring inherited
if self._a.is_affine and self._b.is_affine:
return points
elif not self._a.is_affine and self._b.is_affine:
return self._a.transform_non_affine(points)
else:
return self._b.transform_non_affine(
self._a.transform(points))
def transform_path_non_affine(self, path):
# docstring inherited
if self._a.is_affine and self._b.is_affine:
return path
elif not self._a.is_affine and self._b.is_affine:
return self._a.transform_path_non_affine(path)
else:
return self._b.transform_path_non_affine(
self._a.transform_path(path))
def get_affine(self):
# docstring inherited
if not self._b.is_affine:
return self._b.get_affine()
else:
return Affine2D(np.dot(self._b.get_affine().get_matrix(),
self._a.get_affine().get_matrix()))
def inverted(self):
# docstring inherited
return CompositeGenericTransform(self._b.inverted(), self._a.inverted())
class CompositeAffine2D(Affine2DBase):
"""
A composite transform formed by applying transform *a* then transform *b*.
This version is an optimization that handles the case where both *a*
and *b* are 2D affines.
"""
def __init__(self, a, b, **kwargs):
"""
Create a new composite transform that is the result of
applying transform *a* then transform *b*.
Both *a* and *b* must be instances of :class:`Affine2DBase`.
You will generally not call this constructor directly but use
the :func:`composite_transform_factory` function instead,
which can automatically choose the best kind of composite
transform instance to create.
"""
if not a.is_affine or not b.is_affine:
raise ValueError("'a' and 'b' must be affine transforms")
if a.output_dims != b.input_dims:
raise ValueError("The output dimension of 'a' must be equal to "
"the input dimensions of 'b'")
self.input_dims = a.input_dims
self.output_dims = b.output_dims
Affine2DBase.__init__(self, **kwargs)
self._a = a
self._b = b
self.set_children(a, b)
self._mtx = None
@property
def depth(self):
return self._a.depth + self._b.depth
def _iter_break_from_left_to_right(self):
for left, right in self._a._iter_break_from_left_to_right():
yield left, right + self._b
for left, right in self._b._iter_break_from_left_to_right():
yield self._a + left, right
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._a),
_indent_str(self._b)))
def get_matrix(self):
# docstring inherited
if self._invalid:
self._mtx = np.dot(
self._b.get_matrix(),
self._a.get_matrix())
self._inverted = None
self._invalid = 0
return self._mtx
def composite_transform_factory(a, b):
"""
Create a new composite transform that is the result of applying
transform a then transform b.
Shortcut versions of the blended transform are provided for the
case where both child transforms are affine, or one or the other
is the identity transform.
Composite transforms may also be created using the '+' operator,
e.g.::
c = a + b
"""
# check to see if any of a or b are IdentityTransforms. We use
# isinstance here to guarantee that the transforms will *always*
# be IdentityTransforms. Since TransformWrappers are mutable,
# use of equality here would be wrong.
if isinstance(a, IdentityTransform):
return b
elif isinstance(b, IdentityTransform):
return a
elif isinstance(a, Affine2D) and isinstance(b, Affine2D):
return CompositeAffine2D(a, b)
return CompositeGenericTransform(a, b)
class BboxTransform(Affine2DBase):
"""
:class:`BboxTransform` linearly transforms points from one
:class:`Bbox` to another :class:`Bbox`.
"""
is_separable = True
def __init__(self, boxin, boxout, **kwargs):
"""
Create a new :class:`BboxTransform` that linearly transforms
points from *boxin* to *boxout*.
"""
if not boxin.is_bbox or not boxout.is_bbox:
raise ValueError("'boxin' and 'boxout' must be bbox")
Affine2DBase.__init__(self, **kwargs)
self._boxin = boxin
self._boxout = boxout
self.set_children(boxin, boxout)
self._mtx = None
self._inverted = None
def __str__(self):
return ("{}(\n"
"{},\n"
"{})"
.format(type(self).__name__,
_indent_str(self._boxin),
_indent_str(self._boxout)))
def get_matrix(self):
# docstring inherited
if self._invalid:
inl, inb, inw, inh = self._boxin.bounds
outl, outb, outw, outh = self._boxout.bounds
x_scale = outw / inw
y_scale = outh / inh
if DEBUG and (x_scale == 0 or y_scale == 0):
raise ValueError("Transforming from or to a singular bounding box.")
self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale+outl)],
[0.0 , y_scale, (-inb*y_scale+outb)],
[0.0 , 0.0 , 1.0 ]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class BboxTransformTo(Affine2DBase):
"""
:class:`BboxTransformTo` is a transformation that linearly
transforms points from the unit bounding box to a given
:class:`Bbox`.
"""
is_separable = True
def __init__(self, boxout, **kwargs):
"""
Create a new :class:`BboxTransformTo` that linearly transforms
points from the unit bounding box to *boxout*.
"""
if not boxout.is_bbox:
raise ValueError("'boxout' must be bbox")
Affine2DBase.__init__(self, **kwargs)
self._boxout = boxout
self.set_children(boxout)
self._mtx = None
self._inverted = None
def __str__(self):
return ("{}(\n"
"{})"
.format(type(self).__name__,
_indent_str(self._boxout)))
def get_matrix(self):
# docstring inherited
if self._invalid:
outl, outb, outw, outh = self._boxout.bounds
if DEBUG and (outw == 0 or outh == 0):
raise ValueError("Transforming to a singular bounding box.")
self._mtx = np.array([[outw, 0.0, outl],
[ 0.0, outh, outb],
[ 0.0, 0.0, 1.0]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class BboxTransformToMaxOnly(BboxTransformTo):
"""
:class:`BboxTransformTo` is a transformation that linearly
transforms points from the unit bounding box to a given
:class:`Bbox` with a fixed upper left of (0, 0).
"""
def get_matrix(self):
# docstring inherited
if self._invalid:
xmax, ymax = self._boxout.max
if DEBUG and (xmax == 0 or ymax == 0):
raise ValueError("Transforming to a singular bounding box.")
self._mtx = np.array([[xmax, 0.0, 0.0],
[ 0.0, ymax, 0.0],
[ 0.0, 0.0, 1.0]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class BboxTransformFrom(Affine2DBase):
"""
:class:`BboxTransformFrom` linearly transforms points from a given
:class:`Bbox` to the unit bounding box.
"""
is_separable = True
def __init__(self, boxin, **kwargs):
if not boxin.is_bbox:
raise ValueError("'boxin' must be bbox")
Affine2DBase.__init__(self, **kwargs)
self._boxin = boxin
self.set_children(boxin)
self._mtx = None
self._inverted = None
def __str__(self):
return ("{}(\n"
"{})"
.format(type(self).__name__,
_indent_str(self._boxin)))
def get_matrix(self):
# docstring inherited
if self._invalid:
inl, inb, inw, inh = self._boxin.bounds
if DEBUG and (inw == 0 or inh == 0):
raise ValueError("Transforming from a singular bounding box.")
x_scale = 1.0 / inw
y_scale = 1.0 / inh
self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale)],
[0.0 , y_scale, (-inb*y_scale)],
[0.0 , 0.0 , 1.0 ]],
float)
self._inverted = None
self._invalid = 0
return self._mtx
class ScaledTranslation(Affine2DBase):
"""
A transformation that translates by *xt* and *yt*, after *xt* and *yt*
have been transformed by *scale_trans*.
"""
def __init__(self, xt, yt, scale_trans, **kwargs):
Affine2DBase.__init__(self, **kwargs)
self._t = (xt, yt)
self._scale_trans = scale_trans
self.set_children(scale_trans)
self._mtx = None
self._inverted = None
def __str__(self):
return ("{}(\n"
"{})"
.format(type(self).__name__,
_indent_str(self._t)))
def get_matrix(self):
# docstring inherited
if self._invalid:
xt, yt = self._scale_trans.transform_point(self._t)
self._mtx = np.array([[1.0, 0.0, xt],
[0.0, 1.0, yt],
[0.0, 0.0, 1.0]],
float)
self._invalid = 0
self._inverted = None
return self._mtx
class TransformedPath(TransformNode):
"""
A :class:`TransformedPath` caches a non-affine transformed copy of
the :class:`~matplotlib.path.Path`. This cached copy is
automatically updated when the non-affine part of the transform
changes.
.. note::
Paths are considered immutable by this class. Any update to the
path's vertices/codes will not trigger a transform recomputation.
"""
def __init__(self, path, transform):
"""
Create a new :class:`TransformedPath` from the given
:class:`~matplotlib.path.Path` and :class:`Transform`.
"""
if not isinstance(transform, Transform):
raise ValueError("'transform' must be an instance of "
"'matplotlib.transform.Transform'")
TransformNode.__init__(self)
self._path = path
self._transform = transform
self.set_children(transform)
self._transformed_path = None
self._transformed_points = None
def _revalidate(self):
# only recompute if the invalidation includes the non_affine part of the transform
if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE)
or self._transformed_path is None):
self._transformed_path = \
self._transform.transform_path_non_affine(self._path)
self._transformed_points = \
Path._fast_from_codes_and_verts(
self._transform.transform_non_affine(self._path.vertices),
None, self._path)
self._invalid = 0
def get_transformed_points_and_affine(self):
"""
Return a copy of the child path, with the non-affine part of
the transform already applied, along with the affine part of
the path necessary to complete the transformation. Unlike
:meth:`get_transformed_path_and_affine`, no interpolation will
be performed.
"""
self._revalidate()
return self._transformed_points, self.get_affine()
def get_transformed_path_and_affine(self):
"""
Return a copy of the child path, with the non-affine part of
the transform already applied, along with the affine part of
the path necessary to complete the transformation.
"""
self._revalidate()
return self._transformed_path, self.get_affine()
def get_fully_transformed_path(self):
"""
Return a fully-transformed copy of the child path.
"""
self._revalidate()
return self._transform.transform_path_affine(self._transformed_path)
def get_affine(self):
return self._transform.get_affine()
class TransformedPatchPath(TransformedPath):
"""
A :class:`TransformedPatchPath` caches a non-affine transformed copy of
the :class:`~matplotlib.path.Patch`. This cached copy is automatically
updated when the non-affine part of the transform or the patch changes.
"""
def __init__(self, patch):
"""
Create a new :class:`TransformedPatchPath` from the given
:class:`~matplotlib.path.Patch`.
"""
TransformNode.__init__(self)
transform = patch.get_transform()
self._patch = patch
self._transform = transform
self.set_children(transform)
self._path = patch.get_path()
self._transformed_path = None
self._transformed_points = None
def _revalidate(self):
patch_path = self._patch.get_path()
# Only recompute if the invalidation includes the non_affine part of
# the transform, or the Patch's Path has changed.
if (self._transformed_path is None or self._path != patch_path or
(self._invalid & self.INVALID_NON_AFFINE ==
self.INVALID_NON_AFFINE)):
self._path = patch_path
self._transformed_path = \
self._transform.transform_path_non_affine(patch_path)
self._transformed_points = \
Path._fast_from_codes_and_verts(
self._transform.transform_non_affine(patch_path.vertices),
None, patch_path)
self._invalid = 0
def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True):
"""
Modify the endpoints of a range as needed to avoid singularities.
Parameters
----------
vmin, vmax : float
The initial endpoints.
expander : float, optional, default: 0.001
Fractional amount by which *vmin* and *vmax* are expanded if
the original interval is too small, based on *tiny*.
tiny : float, optional, default: 1e-15
Threshold for the ratio of the interval to the maximum absolute
value of its endpoints. If the interval is smaller than
this, it will be expanded. This value should be around
1e-15 or larger; otherwise the interval will be approaching
the double precision resolution limit.
increasing : bool, optional, default: True
If True, swap *vmin*, *vmax* if *vmin* > *vmax*.
Returns
-------
vmin, vmax : float
Endpoints, expanded and/or swapped if necessary.
If either input is inf or NaN, or if both inputs are 0 or very
close to zero, it returns -*expander*, *expander*.
"""
if (not np.isfinite(vmin)) or (not np.isfinite(vmax)):
return -expander, expander
swapped = False
if vmax < vmin:
vmin, vmax = vmax, vmin
swapped = True
maxabsvalue = max(abs(vmin), abs(vmax))
if maxabsvalue < (1e6 / tiny) * np.finfo(float).tiny:
vmin = -expander
vmax = expander
elif vmax - vmin <= maxabsvalue * tiny:
if vmax == 0 and vmin == 0:
vmin = -expander
vmax = expander
else:
vmin -= expander*abs(vmin)
vmax += expander*abs(vmax)
if swapped and not increasing:
vmin, vmax = vmax, vmin
return vmin, vmax
def interval_contains(interval, val):
"""
Check, inclusively, whether an interval includes a given value.
Parameters
----------
interval : sequence of scalar
A 2-length sequence, endpoints that define the interval.
val : scalar
Value to check is within interval.
Returns
-------
bool
Returns *True* if given *val* is within the *interval*.
"""
a, b = interval
if a > b:
a, b = b, a
return a <= val <= b
def _interval_contains_close(interval, val, rtol=1e-10):
"""
Check, inclusively, whether an interval includes a given value, with the
interval expanded by a small tolerance to admit floating point errors.
Parameters
----------
interval : sequence of scalar
A 2-length sequence, endpoints that define the interval.
val : scalar
Value to check is within interval.
rtol : scalar
Tolerance slippage allowed outside of this interval. Default
1e-10 * (b - a).
Returns
-------
bool
Returns *True* if given *val* is within the *interval* (with tolerance)
"""
a, b = interval
if a > b:
a, b = b, a
rtol = (b - a) * rtol
return a - rtol <= val <= b + rtol
def interval_contains_open(interval, val):
"""
Check, excluding endpoints, whether an interval includes a given value.
Parameters
----------
interval : sequence of scalar
A 2-length sequence, endpoints that define the interval.
val : scalar
Value to check is within interval.
Returns
-------
bool
Returns true if given val is within the interval.
"""
a, b = interval
return a < val < b or a > val > b
def offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches'):
"""
Return a new transform with an added offset.
Parameters
----------
trans : :class:`Transform` instance
Any transform, to which offset will be applied.
fig : :class:`~matplotlib.figure.Figure`, optional, default: None
Current figure. It can be None if *units* are 'dots'.
x, y : float, optional, default: 0.0
Specifies the offset to apply.
units : {'inches', 'points', 'dots'}, optional
Units of the offset.
Returns
-------
trans : :class:`Transform` instance
Transform with applied offset.
"""
if units == 'dots':
return trans + Affine2D().translate(x, y)
if fig is None:
raise ValueError('For units of inches or points a fig kwarg is needed')
if units == 'points':
x /= 72.0
y /= 72.0
elif not units == 'inches':
raise ValueError('units must be dots, points, or inches')
return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)