1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
# -*- coding:UTF-8 -*-
# @Time : 2020/8/21 16:43
# @File : search_strategy_d.py
# @email : litao@igengmei.com
# @author : litao
import hashlib
import json
import pymysql
# import xlwt
import datetime
# import redis
# from pyhive import hive
# from maintenance.func_send_email_with_file import send_file_email
# from typing import Dict, List
# from elasticsearch_7 import Elasticsearch
# from elasticsearch_7.helpers import scan
# import sys
import time
from pyspark import SparkConf
from pyspark.sql import SparkSession, DataFrame
# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti
db = pymysql.connect(host='172.16.50.175', port=3306, user='doris', passwd='o5gbA27hXHHm',
db='doris_olap')
cursor = db.cursor()
startTime = time.time()
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.sql.adaptive.enabled", True)
sparkConf.set("spark.sql.adaptive.skewedJoin.enabled", True)
sparkConf.set("spark.shuffle.statistics.verbose", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
sparkConf.set("prod.gold.jdbcuri",
"jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true")
sparkConf.set("prod.mimas.jdbcuri",
"jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true")
sparkConf.set("prod.gaia.jdbcuri",
"jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true")
sparkConf.set("prod.tidb.jdbcuri",
"jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
# sparkConf.set("prod.jerry.jdbcuri",
# "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379")
sparkConf.set("spark.sql.parquet.compression.codec", "snappy")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000")
# sparkConf.set("prod.tidb.database", "jerry_prod")
# sparkConf.set("spark.executor.extraJavaOptions", "-Djava.library.path=HADOOP_HOME/lib/native")
sparkConf.set("spark.driver.extraLibraryPath", "/opt/hadoop/lib/native")
# sparkConf.set("spark.driver.extraJavaOptions", "-Djava.library.path=HADOOP_HOME/lib/native")
spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions")
.config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName(
"LR PYSPARK TEST").enableHiveSupport().getOrCreate())
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar")
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar")
# spark.sql("ADD JAR /srv/apps/meta_base_code/snappy-java-1.1.2.jar")
spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'")
spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'")
spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'")
task_list = []
task_days = 5
for t in range(0, task_days):
day_num = 0 - t
now = (datetime.datetime.now() + datetime.timedelta(days=day_num))
last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d")
today_str = now.strftime("%Y%m%d")
yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d")
one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d")
sql_dev_device_id = """
SELECT partition_date,device_id
FROM
(--找出user_id当天活跃的第一个设备id
SELECT user_id,partition_date,
if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
FROM online.ml_user_updates
WHERE partition_date>='{yesterday_str}' AND partition_date<'{today_str}'
)t1
JOIN
( --医生账号
SELECT distinct user_id
FROM online.tl_hdfs_doctor_view
WHERE partition_date = '{yesterday_str}'
--马甲账号/模特用户
UNION ALL
SELECT user_id
FROM ml.ml_c_ct_ui_user_dimen_d
WHERE partition_day = '{yesterday_str}'
AND (is_puppet = 'true' or is_classifyuser = 'true')
UNION ALL
--公司内网覆盖用户
select distinct user_id
from dim.dim_device_user_staff
UNION ALL
--登陆过医生设备
SELECT distinct t1.user_id
FROM
(
SELECT user_id, v.device_id as device_id
FROM online.ml_user_history_detail
LATERAL VIEW EXPLODE(device_history_list) v AS device_id
WHERE partition_date = '{yesterday_str}'
)t1
JOIN
(
SELECT device_id
FROM online.ml_device_history_detail
WHERE partition_date = '{yesterday_str}'
AND is_login_doctor = '1'
)t2
ON t1.device_id = t2.device_id
)t2
on t1.user_id=t2.user_id
group by partition_date,device_id
""".format(yesterday_str=yesterday_str, today_str=today_str)
print(sql_dev_device_id)
dev_df = spark.sql(sql_dev_device_id)
dev_df_view = dev_df.createOrReplaceTempView("dev_view")
dev_df.cache()
dev_df.show(1)
sql_res = dev_df.collect()
# for res in sql_res:
# print(res)
print("-------------------------------")
sql_spam_pv_device_id = """
select distinct device_id
from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
where PARTITION_DAY = '{yesterday_str}'
AND is_abnormal_device = 'true'
""".format(yesterday_str=yesterday_str)
print(sql_spam_pv_device_id)
spam_pv_df = spark.sql(sql_spam_pv_device_id)
spam_pv_df.createOrReplaceTempView("spam_pv")
spam_pv_df.show(1)
sql_res = spam_pv_df.collect()
spam_pv_df.cache()
# for res in sql_res:
# print(res)
print("-------------------------------")
sql = r"""
SELECT t3.partition_date as partition_date
,t3.device_os_type as device_os_type
,t3.active_type as active_type
,t3.channel as channel
,NVL(t3.search_pv,0) as pv
,NVL(t3.search_uv,0) as uv
,if(NVL(t3.search_uv,0) <> 0 ,cast((NVL(t4.hexin_card_click_pv,0)/NVL(t3.search_uv,0)) as decimal(18,5)) , 0) as search_core_pv
,if(NVL(t3.search_uv,0) <> 0 ,cast((NVL(t4.neirong_card_click_pv,0)/NVL(t3.search_uv,0)) as decimal(18,5)) , 0) as search_pv
FROM
(--昨天总搜索量
SELECT partition_date,active_type,device_os_type,channel,search_pv,search_uv
FROM
(
SELECT t1.partition_date,active_type,device_os_type,channel
,count(t1.cl_id) as search_pv
,count(distinct t1.cl_id) as search_uv
FROM
(
SELECT partition_date
,params['query'] as query
,cl_id
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND action in ('do_search','search_result_click_search')
UNION ALL
SELECT partition_date,coalesce(params['query'],params['card_name']) as query,cl_id
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND action = 'on_click_card'
AND params['page_name']='search_home'
UNION ALL
SELECT partition_date
,params['card_name'] as query
,cl_id
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND action = 'on_click_card'
AND params['in_page_pos']='猜你喜欢'
AND params['tab_name']='精选'
AND params['card_type']='search_word'
--AND page_name='home' android的page_name为空
UNION ALL
SELECT partition_date
,params['card_name'] as query
,cl_id
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND action = 'on_click_card'
AND page_name='welfare_home'
AND params['card_type'] ='search_word'
AND params['in_page_pos']='大家都在搜'
UNION ALL
SELECT partition_date
,params['card_name'] as query
,cl_id
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND int(split(app_version,'\\.')[1]) >= 27
AND action='on_click_card'
AND params['card_type']='highlight_word'
)t1
JOIN
(
SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type
FROM
(
SELECT
partition_date,m.device_id
,array(device_os_type ,'合计') as device_os_type
,array(case WHEN active_type = '4' THEN '老活'
WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type
,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel
FROM online.ml_device_day_active_status m
LEFT JOIN
(SELECT code,is_ai_channel,partition_day
FROM DIM.DIM_AI_CHANNEL_ZP_NEW
WHERE partition_day>= {yesterday_str}
AND partition_day < {today_str}) tmp
ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND active_type in ('1','2','4')
AND first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
AND first_channel_source_type not like 'promotion\_jf\_%'
) mas
LATERAL VIEW explode(mas.channel) t2 AS channel
LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type
LATERAL VIEW explode(mas.active_type) t2 AS active_type
)t2
on t1.cl_id=t2.device_id AND t1.partition_date = t2.partition_date
LEFT JOIN spam_pv
on spam_pv.device_id=t1.cl_id
LEFT JOIN dev_view
on t1.partition_date=dev_view.partition_date and t1.cl_id=dev_view.device_id
WHERE (spam_pv.device_id IS NULL or spam_pv.device_id ='')
and (dev_view.device_id is null or dev_view.device_id ='')
GROUP BY t1.partition_date,t2.active_type,device_os_type,channel
)t
)t3
LEFT JOIN
(--昨天搜索结果页卡片点击pv
SELECT t1.partition_date,active_type,device_os_type,channel
,sum(hexin) as hexin_card_click_pv
,sum(neirong) as neirong_card_click_pv
FROM
(
SELECT NVL(t2.partition_date,t3.partition_date) as partition_date
,NVL(t2.cl_id,t3.cl_id) as cl_id
,NVL(t2.query,t3.query) as query
,NVL(t2.pv,0) as hexin
,NVL(t3.pv,0) as neirong
FROM
(--核心卡片点击
SELECT partition_date
,params['query'] as query
,cl_id
,count(1) as pv
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND ((action in ('search_result_click_recommend_item','search_result_welfare_click_item','search_result_hospital_click_item','search_result_doctor_click_item','on_click_doctor_card', 'on_click_hospital_card')
AND page_name in ('search_result_more','search_result_welfare','search_result_hospital','search_result_doctor'))
or (action = 'goto_welfare_detail' AND params [ 'from' ] = 'search_result_welfare_recommend')
or (action = 'on_click_card' AND params['card_content_type'] in ('service','hospital','doctor') AND page_name in ('search_result_more','search_result_welfare','search_result_hospital','search_result_doctor'))
or (action = 'on_click_button' AND params['button_name'] = 'check_plan' AND page_name = 'search_result_more'))
GROUP BY partition_date
,params['query']
,cl_id
)t2
FULL JOIN
(--内容卡片点击
SELECT partition_date
,params['query'] as query
,cl_id
,count(1) as pv
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND ((action in ('on_click_topic_card','on_click_diary_card','search_result_click_infomation_item')
AND page_name in ('search_result_more','search_result_diary','search_result_post'))
or (action = 'on_click_card' AND params['card_content_type'] in ('answer','diary') AND page_name in ('search_result_more','search_result_diary','search_result_question_answer')))
GROUP BY partition_date
,params['query']
,cl_id
)t3
on t3.partition_date=t2.partition_date
AND t3.query=t2.query
AND t3.cl_id=t2.cl_id
)t1
JOIN
(
SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type
FROM
(
SELECT
partition_date,m.device_id
,array(device_os_type ,'合计') as device_os_type
,array(case WHEN active_type = '4' THEN '老活'
WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type
,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel
FROM online.ml_device_day_active_status m
LEFT JOIN
(SELECT code,is_ai_channel,partition_day
FROM DIM.DIM_AI_CHANNEL_ZP_NEW
WHERE partition_day>= {yesterday_str}
AND partition_day < {today_str}) tmp
ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
WHERE partition_date >= {yesterday_str}
AND partition_date < {today_str}
AND active_type in ('1','2','4')
AND first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
AND first_channel_source_type not like 'promotion\_jf\_%'
) mas
LATERAL VIEW explode(mas.channel) t2 AS channel
LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type
LATERAL VIEW explode(mas.active_type) t2 AS active_type
)dev
on t1.cl_id=dev.device_id and t1.partition_date = dev.partition_date
LEFT JOIN spam_pv
on spam_pv.device_id=t1.cl_id
LEFT JOIN dev_view
on t1.partition_date=dev_view.partition_date and t1.cl_id=dev_view.device_id
WHERE (spam_pv.device_id IS NULL or spam_pv.device_id ='')
and (dev_view.device_id is null or dev_view.device_id ='')
GROUP BY t1.partition_date,active_type,device_os_type,channel
)t4
on t3.partition_date=t4.partition_date and t3.active_type=t4.active_type and t3.device_os_type = t4.device_os_type AND t3.channel = t4.channel
""".format(today_str=today_str, yesterday_str=yesterday_str)
device_df = spark.sql(sql)
device_df.show(1, False)
sql_res = device_df.collect()
# for res in sql_res:
# print(res)
device_df.createOrReplaceTempView("data_table")
#
# sql = r"""
# SELECT t3.partition_date as partition_date
# ,t3.device_os_type as device_os_type
# ,t3.active_type as active_type
# ,t3.channel as channel
# ,NVL(t3.search_pv,0) as pv
# ,NVL(t3.search_uv,0) as uv
# ,if(NVL(t3.search_uv,0) <> 0 ,concat(cast((NVL(t4.hexin_card_click_pv,0)/NVL(t3.search_uv,0)) as decimal(18,2)),'') , '-') as search_core_pv
# ,if(NVL(t3.search_uv,0) <> 0 ,concat(cast((NVL(t4.neirong_card_click_pv,0)/NVL(t3.search_uv,0)) as decimal(18,2)),'') , '-') as search_pv
# FROM
# (--昨天总搜索量
# SELECT partition_date,active_type,device_os_type,channel,search_pv,search_uv
# FROM
# (
# SELECT t1.partition_date,active_type,device_os_type,channel
# ,count(t1.cl_id) as search_pv
# ,count(distinct t1.cl_id) as search_uv
# FROM
# (
# SELECT partition_date
# ,params['query'] as query
# ,cl_id
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND action in ('do_search','search_result_click_search')
#
# UNION ALL
# SELECT partition_date,params['query'] as query,cl_id
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND action = 'on_click_card'
# AND params['page_name']='search_home'
#
# UNION ALL
# SELECT partition_date
# ,params['card_name'] as query
# ,cl_id
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND action = 'on_click_card'
# AND params['in_page_pos']='猜你喜欢'
# AND params['tab_name']='精选'
# AND params['card_type']='search_word'
# --AND page_name='home' android的page_name为空
#
# UNION ALL
# SELECT partition_date
# ,params['card_name'] as query
# ,cl_id
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND action = 'on_click_card'
# AND page_name='welfare_home'
# AND params['card_type'] ='search_word'
# AND params['in_page_pos']='大家都在搜'
#
# UNION ALL
# SELECT partition_date
# ,params['card_name'] as query
# ,cl_id
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND int(split(app_version,'\\.')[1]) >= 27
# AND action='on_click_card'
# AND params['card_type']='highlight_word'
# )t1
# JOIN
# (
# SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type
# FROM
# (
# SELECT
# partition_date,m.device_id
# ,array(device_os_type ,'合计') as device_os_type
# ,array(case WHEN active_type = '4' THEN '老活'
# WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type
# ,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel
# FROM online.ml_device_day_active_status m
# LEFT JOIN
# (SELECT code,is_ai_channel,partition_day
# FROM DIM.DIM_AI_CHANNEL_ZP_NEW
# WHERE partition_day>= {yesterday_str}
# AND partition_day < {today_str}) tmp
# ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND active_type in ('1','2','4')
# AND first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
# ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
# ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
# ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
# ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
# ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
# ,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
# AND first_channel_source_type not like 'promotion\_jf\_%'
# ) mas
# LATERAL VIEW explode(mas.channel) t2 AS channel
# LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type
# LATERAL VIEW explode(mas.active_type) t2 AS active_type
# )t2
# on t1.cl_id=t2.device_id AND t1.partition_date = t2.partition_date
#
# LEFT JOIN
# (
# SELECT DISTINCT device_id
# FROM ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
# WHERE partition_day={yesterday_str}
#
# UNION ALL
# SELECT DISTINCT device_id
# FROM dim.dim_device_user_staff --去除内网用户
# )spam_pv
# on spam_pv.device_id=t1.cl_id
# LEFT JOIN
# (
# SELECT partition_date,device_id
# FROM
# (--找出user_id当天活跃的第一个设备id
# SELECT user_id,partition_date,
# if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
# FROM online.ml_user_updates
# WHERE partition_date>='${{yesterday_str}}' AND partition_date<'${{today_str}}'
# )t1
# JOIN
# ( --医生账号
# SELECT distinct user_id
# FROM online.tl_hdfs_doctor_view
# WHERE partition_date = {yesterday_str}
#
# --马甲账号/模特用户
# UNION ALL
# SELECT user_id
# FROM ml.ml_c_ct_ui_user_dimen_d
# WHERE partition_day = {yesterday_str}
# AND (is_puppet = 'true' or is_classifyuser = 'true')
#
# UNION ALL
# --公司内网覆盖用户
# select distinct user_id
# from dim.dim_device_user_staff
#
# UNION ALL
# --登陆过医生设备
# SELECT distinct t1.user_id
# FROM
# (
# SELECT user_id, v.device_id as device_id
# FROM online.ml_user_history_detail
# LATERAL VIEW EXPLODE(device_history_list) v AS device_id
# WHERE partition_date = {yesterday_str}
# )t1
# JOIN
# (
# SELECT device_id
# FROM online.ml_device_history_detail
# WHERE partition_date = {yesterday_str}
# AND is_login_doctor = '1'
# )t2
# ON t1.device_id = t2.device_id
# )t2
# on t1.user_id=t2.user_id
# group by partition_date,device_id
# )dev
# on t1.partition_date=dev.partition_date and t1.cl_id=dev.device_id
# WHERE (spam_pv.device_id IS NULL or spam_pv.device_id ='')
# and (dev.device_id is null or dev.device_id ='')
# GROUP BY t1.partition_date,t2.active_type,device_os_type,channel
# )t
# )t3
#
# LEFT JOIN
# (--昨天搜索结果页卡片点击pv
# SELECT t1.partition_date,active_type,device_os_type,channel
# ,sum(hexin) as hexin_card_click_pv
# ,sum(neirong) as neirong_card_click_pv
# FROM
# (
# SELECT NVL(t2.partition_date,t3.partition_date) as partition_date
# ,NVL(t2.cl_id,t3.cl_id) as cl_id
# ,NVL(t2.query,t3.query) as query
# ,NVL(t2.pv,0) as hexin
# ,NVL(t3.pv,0) as neirong
# FROM
# (--核心卡片点击
# SELECT partition_date
# ,params['query'] as query
# ,cl_id
# ,count(1) as pv
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND ((action in ('search_result_click_recommend_item','search_result_welfare_click_item','search_result_hospital_click_item','search_result_doctor_click_item','on_click_doctor_card', 'on_click_hospital_card')
# AND page_name in ('search_result_more','search_result_welfare','search_result_hospital','search_result_doctor'))
# or (action = 'goto_welfare_detail' AND params [ 'from' ] = 'search_result_welfare_recommend')
# or (action = 'on_click_card' AND params['card_content_type'] in ('service','hospital','doctor') AND page_name in ('search_result_more','search_result_welfare','search_result_hospital','search_result_doctor'))
# or (action = 'on_click_button' AND params['button_name'] = 'check_plan' AND page_name = 'search_result_more'))
# GROUP BY partition_date
# ,params['query']
# ,cl_id
# )t2
# FULL JOIN
# (--内容卡片点击
# SELECT partition_date
# ,params['query'] as query
# ,cl_id
# ,count(1) as pv
# FROM online.bl_hdfs_maidian_updates
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND ((action in ('on_click_topic_card','on_click_diary_card','search_result_click_infomation_item')
# AND page_name in ('search_result_more','search_result_diary','search_result_post'))
# or (action = 'on_click_card' AND params['card_content_type'] in ('answer','diary') AND page_name in ('search_result_more','search_result_diary','search_result_question_answer')))
# GROUP BY partition_date
# ,params['query']
# ,cl_id
# )t3
# on t3.partition_date=t2.partition_date
# AND t3.query=t2.query
# AND t3.cl_id=t2.cl_id
# )t1
# JOIN
# (
# SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type
# FROM
# (
# SELECT
# partition_date,m.device_id
# ,array(device_os_type ,'合计') as device_os_type
# ,array(case WHEN active_type = '4' THEN '老活'
# WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type
# ,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel
# FROM online.ml_device_day_active_status m
# LEFT JOIN
# (SELECT code,is_ai_channel,partition_day
# FROM DIM.DIM_AI_CHANNEL_ZP_NEW
# WHERE partition_day>= {yesterday_str}
# AND partition_day < {today_str}) tmp
# ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
# WHERE partition_date >= {yesterday_str}
# AND partition_date < {today_str}
# AND active_type in ('1','2','4')
# AND first_channel_source_type not in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
# ,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
# ,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
# ,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
# ,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
# ,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
# ,'promotion_shike','promotion_julang_jl03','promotion_zuimei')
# AND first_channel_source_type not like 'promotion\_jf\_%'
# ) mas
# LATERAL VIEW explode(mas.channel) t2 AS channel
# LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type
# LATERAL VIEW explode(mas.active_type) t2 AS active_type
# )dev
# on t1.cl_id=dev.device_id and t1.partition_date = dev.partition_date
# LEFT JOIN
# (
# SELECT DISTINCT device_id
# FROM ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
# WHERE partition_day={yesterday_str}
#
# UNION ALL
# SELECT DISTINCT device_id
# FROM dim.dim_device_user_staff --去除内网用户
# )spam_pv
# on spam_pv.device_id=t1.cl_id
# LEFT JOIN
# (
# SELECT partition_date,device_id
# FROM
# (--找出user_id当天活跃的第一个设备id
# SELECT user_id,partition_date,
# if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
# FROM online.ml_user_updates
# WHERE partition_date>='${{yesterday_str}}' AND partition_date<'${{today_str}}'
# )t1
# JOIN
# ( --医生账号
# SELECT distinct user_id
# FROM online.tl_hdfs_doctor_view
# WHERE partition_date = {yesterday_str}
#
# --马甲账号/模特用户
# UNION ALL
# SELECT user_id
# FROM ml.ml_c_ct_ui_user_dimen_d
# WHERE partition_day = {yesterday_str}
# AND (is_puppet = 'true' or is_classifyuser = 'true')
#
# UNION ALL
# --公司内网覆盖用户
# select distinct user_id
# from dim.dim_device_user_staff
#
# UNION ALL
# --登陆过医生设备
# SELECT distinct t1.user_id
# FROM
# (
# SELECT user_id, v.device_id as device_id
# FROM online.ml_user_history_detail
# LATERAL VIEW EXPLODE(device_history_list) v AS device_id
# WHERE partition_date = {yesterday_str}
# )t1
# JOIN
# (
# SELECT device_id
# FROM online.ml_device_history_detail
# WHERE partition_date = {yesterday_str}
# AND is_login_doctor = '1'
# )t2
# ON t1.device_id = t2.device_id
# )t2
# on t1.user_id=t2.user_id
# group by t1.partition_date,device_id
# )dev1
# on t1.partition_date=dev1.partition_date and t1.cl_id=dev1.device_id
# WHERE (spam_pv.device_id IS NULL or spam_pv.device_id ='')
# and (dev1.device_id is null or dev1.device_id ='')
# GROUP BY t1.partition_date,active_type,device_os_type,channel
# )t4
# on t3.partition_date=t4.partition_date and t3.active_type=t4.active_type and t3.device_os_type = t4.device_os_type AND t3.channel = t4.channel
#
#
#
# """.format(today_str=today_str, yesterday_str=yesterday_str, )
# device_df = spark.sql(sql)
# device_df.show(1, False)
# sql_res = device_df.collect()
# for res in sql_res:
# print(res)
# device_df.createOrReplaceTempView("data_table")
#
# collects_sql = """
# SELECT device_type,active_type,channel_type,ROUND(if(NVL(sum(uv),0) <> 0 ,NVL(sum(search_core_pv),0)/NVL(sum(uv),0) ,0),5) as core_pv_division_uv,
# ROUND(if(NVL(sum(uv),0) <> 0 ,NVL(sum(search_pv),0)/NVL(sum(uv),0) , 0),5) as pv_division_uv
# FROM data_table GROUP BY device_type,active_type,channel_type
# """
# finnal_df = spark.sql(collects_sql)
#
# finnal_df.show(1, False)
# sql_res = finnal_df.collect()
for res in sql_res:
# print(res)
device_type = res.device_os_type
active_type = res.active_type
channel_type = res.channel
core_pv_division_uv = res.search_core_pv
pv_division_uv = res.search_pv
pid = hashlib.md5(
(today_str + device_type + active_type + channel_type).encode("utf8")).hexdigest()
instert_sql = """replace into search_strategy_d(
day_id,device_type,active_type,channel_type,core_pv_division_uv,pv_division_uv,pid
) VALUES('{day_id}','{device_type}','{active_type}','{channel_type}',{core_pv_division_uv},{pv_division_uv},'{pid}');""".format(
day_id=today_str, device_type=device_type,
active_type=active_type, channel_type=channel_type, core_pv_division_uv=core_pv_division_uv,pv_division_uv=pv_division_uv,pid=pid
)
print(instert_sql)
# cursor.execute("set names 'UTF8'")
res = cursor.execute(instert_sql)
db.commit()
print(res)
db.close()