Commit 87168824 authored by litaolemo's avatar litaolemo

update

parent 42a0f9ef
# -*- coding:UTF-8 -*-
# @Time : 2020/9/9 17:15
# @File : __init__.py.py
# @email : litao@igengmei.com
# @author : litao
\ No newline at end of file
# -*- coding:UTF-8 -*-
# @Time : 2020/9/9 17:16
# @File : func_get_pv_card_id.py
# @email : litao@igengmei.com
# @author : litao
import hashlib
import json
import pymysql
import xlwt, datetime
import redis
# from pyhive import hive
from maintenance.func_send_email_with_file import send_file_email
from typing import Dict, List
from elasticsearch_7 import Elasticsearch
from elasticsearch_7.helpers import scan
import sys
import time
from pyspark import SparkConf
from pyspark.sql import SparkSession, DataFrame
# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti
def get_card_id():
startTime = time.time()
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
sparkConf.set("prod.gold.jdbcuri",
"jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true")
sparkConf.set("prod.mimas.jdbcuri",
"jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true")
sparkConf.set("prod.gaia.jdbcuri",
"jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true")
sparkConf.set("prod.tidb.jdbcuri",
"jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.jerry.jdbcuri",
"jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000")
sparkConf.set("prod.tidb.database", "jerry_prod")
spark = (
SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions")
.config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName(
"LR PYSPARK TEST").enableHiveSupport().getOrCreate())
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar")
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar")
spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'")
spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'")
spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'")
task_list = []
task_days = 2
for t in range(1, task_days):
day_num = 0 - t
now = (datetime.datetime.now() + datetime.timedelta(days=day_num))
last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d")
today_str = now.strftime("%Y%m%d")
yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d")
one_week_age_str = (now + datetime.timedelta(days=-3)).strftime("%Y%m%d")
sql = r"""
SELECT * FROM
(--精准曝光,卡片id和session_id去重
SELECT partition_date,
card_content_type,
cl_id,
recommend_type,
card_id
FROM
(
SELECT partition_date,
cl_id,
case when card_content_type in ('qa','answer') then 'qa' else card_content_type end as card_content_type,
CASE when transaction_type in ('fmctr') then 'fmctr'
WHEN transaction_type like '%ctr' THEN 'ctr预估'
WHEN transaction_type like '%cvr' THEN 'cvr预估'
WHEN transaction_type in ('-1','smr') THEN 'smr'
when transaction_type in ('pgc','hotspot') then '热点卡片'
when transaction_type in ('newdata') then '保量卡片'
when transaction_type in ('hotspot_feed') then 'hotspot_feed'
END AS recommend_type,
card_id,
app_session_id
from online.ml_community_precise_exposure_detail
WHERE partition_date='{partition_day}'
AND action in ('page_precise_exposure','home_choiceness_card_exposure') --7745版本action改为page_precise_exposure
AND is_exposure = '1' ----精准曝光
AND page_name ='home'
AND tab_name = '精选'
AND (transaction_type in ('-1','smr','hotspot','pgc','newdata','hotspot_feed')
or transaction_type like '%ctr' or transaction_type like '%cvr')
AND card_content_type in ('qa','diary','user_post','answer')
group by partition_date,
case when card_content_type in ('qa','answer') then 'qa' else card_content_type end,
cl_id,
CASE when transaction_type in ('fmctr') then 'fmctr'
WHEN transaction_type like '%ctr' THEN 'ctr预估'
WHEN transaction_type like '%cvr' THEN 'cvr预估'
WHEN transaction_type in ('-1','smr') THEN 'smr'
when transaction_type in ('pgc','hotspot') then '热点卡片'
when transaction_type in ('newdata') then '保量卡片'
when transaction_type in ('hotspot_feed') then 'hotspot_feed' END,
card_id,
app_session_id
)a
group by partition_date,card_content_type,cl_id,recommend_type,card_id
)t2
LEFT JOIN
(
select distinct device_id
from ml.ml_d_ct_dv_devicespam_d --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
WHERE partition_day='{partition_day}'
union all
select distinct device_id
from dim.dim_device_user_staff --去除内网用户
)spam_pv
on spam_pv.device_id=t2.cl_id
LEFT JOIN
(
SELECT partition_date,device_id
FROM
(--找出user_id当天活跃的第一个设备id
SELECT user_id,partition_date,
if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
FROM online.ml_user_updates
WHERE partition_date='{partition_day}'
)t1
JOIN
( --医生账号
SELECT distinct user_id
FROM online.tl_hdfs_doctor_view
WHERE partition_date = '{partition_day}'
--马甲账号/模特用户
UNION ALL
SELECT user_id
FROM ml.ml_c_ct_ui_user_dimen_d
WHERE partition_day = '{partition_day}'
AND (is_puppet = 'true' or is_classifyuser = 'true')
UNION ALL
--公司内网覆盖用户
select distinct user_id
from dim.dim_device_user_staff
UNION ALL
--登陆过医生设备
SELECT distinct t1.user_id
FROM
(
SELECT user_id, v.device_id as device_id
FROM online.ml_user_history_detail
LATERAL VIEW EXPLODE(device_history_list) v AS device_id
WHERE partition_date = '{partition_day}'
) t1
JOIN
(
SELECT device_id
FROM online.ml_device_history_detail
WHERE partition_date = '{partition_day}'
AND is_login_doctor = '1'
) t2
ON t1.device_id = t2.device_id
)t2
on t1.user_id=t2.user_id
group by partition_date,device_id
)dev
on t2.partition_date=dev.partition_date and t2.cl_id=dev.device_id
WHERE spam_pv.device_id IS NULL
and dev.device_id is null
""".format(partition_day=yesterday_str)
device_df = spark.sql(sql)
device_df.show(1, False)
sql_res = device_df.collect()
res_dict = {
"diary": [],
"user_post": [],
"qa": []
}
for res in sql_res:
print(res)
card_content_type = res.card_content_type
card_id = res.card_id
if card_content_type in res_dict:
res_dict[card_content_type].append(card_id)
return res_dict
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment