Commit 04916ba2 authored by 赵威's avatar 赵威

timer

parent ecc5c559
......@@ -39,33 +39,19 @@ def main():
model.train(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), steps=5000)
metrics = model.evaluate(input_fn=lambda: esmm_input_fn(val_df, False), steps=5000)
print("metrics: " + str(metrics))
model_export_path = str(Path("~/data/models/").expanduser())
save_path = model_export(model, all_features, model_export_path)
print("save to: " + save_path)
# predictions = model.predict(input_fn=lambda: esmm_input_fn(test_df, False))
# print(next(iter(predictions)))
test_300 = test_df.sample(300)
test_300_2 = test_df.sample(300)
test_300_3 = test_df.sample(300)
predict_fn = tf.contrib.predictor.from_saved_model(save_path)
time_1 = timeit.default_timer()
model_predict(test_300, predict_fn)
total_1 = (timeit.default_timer() - time_1)
print("prediction cost {:.5f} s".format(total_1))
time_2 = timeit.default_timer()
model_predict(test_300_2, predict_fn)
total_2 = (timeit.default_timer() - time_2)
print("prediction cost {:.5f} s".format(total_2))
time_3 = timeit.default_timer()
model_predict(test_300_3, predict_fn)
total_3 = (timeit.default_timer() - time_3)
print("prediction cost {:.5f} s".format(total_3))
for i in range(10):
test_300 = test_df.sample(300)
time_1 = timeit.default_timer()
model_predict(test_300, predict_fn)
total_1 = (timeit.default_timer() - time_1)
print("prediction cost {:.5f} s".format(total_1))
total_time = (time.time() - time_begin) / 60
print("cost {:.2f} mins at {}".format(total_time, datetime.now()))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment