Commit 2b8f52b9 authored by 赵威's avatar 赵威

predict from file

parent 369d99a3
import os
import pickle
import random
import shutil
import time
......@@ -49,7 +50,6 @@ def main():
train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = build_features(df)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# model_path = str(Path("~/data/model_tmp/").expanduser())
# if os.path.exists(model_path):
......@@ -66,8 +66,13 @@ def main():
# print("save to: " + save_path)
save_path = "/home/gmuser/data/models/1595317247"
# save_path = str(Path("~/Desktop/models/1595297428").expanduser())
predict_fn = tf.contrib.predictor.from_saved_model(save_path)
filename = save_path + "/saved_model.pb"
# tf.saved_model.load
predict_fn = tf.contrib.predictor.from_saved_model(filename)
# for i in range(5):
# test_300 = test_df.sample(300)
......@@ -79,13 +84,6 @@ def main():
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# ]
# df = get_device_df_from_redis()
# df2 = get_diary_df_from_redis()
# redis_device_df = device_feature_engineering(df)
# redis_diary_df = diary_feature_engineering(df2, from_redis=True)
# device_ids = list(redis_device_df["device_id"].values)[:20]
# diary_ids = list(redis_diary_df["card_id"].values)
device_dict = get_device_dict_from_redis()
diary_dict = get_diary_dict_from_redis()
......
......@@ -132,8 +132,8 @@ def model_predict_diary(device_id, diary_ids, device_dict, diary_dict, predict_f
res_tuple = sorted(zip(diary_ids_res, predictions["output"].tolist()), key=lambda x: x[1], reverse=True)
res = []
for (id, _) in res_tuple:
res.append(id)
print(res)
res.append(int(id))
# print(res)
total_1 = (timeit.default_timer() - time_1)
print("prediction cost {:.5f}s".format(total_1))
return res
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment