Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
31aa4e0e
Commit
31aa4e0e
authored
Sep 03, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update tractate model
parent
e1ead83a
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
60 additions
and
62 deletions
+60
-62
diary_model.py
src/models/esmm/diary_model.py
+1
-1
train_tractate.py
src/train_tractate.py
+59
-61
No files found.
src/models/esmm/diary_model.py
View file @
31aa4e0e
...
@@ -92,7 +92,6 @@ _int_columns = [
...
@@ -92,7 +92,6 @@ _int_columns = [
"business_second_skip_num"
,
"business_second_skip_num"
,
"service_price"
,
"service_price"
,
"service_sold_num"
,
"service_sold_num"
,
"recommend_service_price"
,
]
]
_float_columns
=
[
_float_columns
=
[
"one_ctr"
,
"one_ctr"
,
...
@@ -179,6 +178,7 @@ _categorical_columns = [
...
@@ -179,6 +178,7 @@ _categorical_columns = [
"service_city"
,
"service_city"
,
"recommend_service_id"
,
"recommend_service_id"
,
"recommend_service_city"
,
"recommend_service_city"
,
"recommend_service_price"
,
"device_fd2"
,
"device_fd2"
,
"device_sd2"
,
"device_sd2"
,
"device_fs2"
,
"device_fs2"
,
...
...
src/train_tractate.py
View file @
31aa4e0e
...
@@ -22,71 +22,69 @@ def main():
...
@@ -22,71 +22,69 @@ def main():
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
# tractate_train_columns = set(tractate_fe.INT_COLUMNS + tractate_fe.FLOAT_COLUMNS + tractate_fe.CATEGORICAL_COLUMNS)
tractate_train_columns
=
set
(
tractate_fe
.
INT_COLUMNS
+
tractate_fe
.
FLOAT_COLUMNS
+
tractate_fe
.
CATEGORICAL_COLUMNS
)
# print("features: " + str(len(tractate_train_columns)))
print
(
"features: "
+
str
(
len
(
tractate_train_columns
)))
# tractate_predict_columns = set(PREDICTION_ALL_COLUMNS)
tractate_predict_columns
=
set
(
PREDICTION_ALL_COLUMNS
)
# print(tractate_predict_columns.difference(tractate_train_columns))
print
(
tractate_predict_columns
.
difference
(
tractate_train_columns
))
# print(tractate_train_columns.difference(tractate_predict_columns))
print
(
tractate_train_columns
.
difference
(
tractate_predict_columns
))
# assert tractate_predict_columns == tractate_train_columns
assert
tractate_predict_columns
==
tractate_train_columns
# # dataset_path = Path("~/data/cvr_data").expanduser() # local
# dataset_path = Path("~/data/cvr_data").expanduser() # local
# dataset_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
dataset_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
# tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(dataset_path)
tractate_df
,
tractate_click_df
,
tractate_conversion_df
=
tractate_fe
.
read_csv_data
(
dataset_path
)
# tractate_df = tractate_fe.tractate_feature_engineering(tractate_df)
tractate_df
=
tractate_fe
.
tractate_feature_engineering
(
tractate_df
)
# device_df = device_fe.read_csv_data(dataset_path)
device_df
=
device_fe
.
read_csv_data
(
dataset_path
)
# device_df = device_fe.device_feature_engineering(device_df, "tractate")
device_df
=
device_fe
.
device_feature_engineering
(
device_df
,
"tractate"
)
# # print(device_df.columns)
# print(device_df.columns)
# # print(device_df.dtypes, "\n")
# print(device_df.dtypes, "\n")
# cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df)
cc_df
=
click_fe
.
click_feature_engineering
(
tractate_click_df
,
tractate_conversion_df
)
# df = tractate_fe.join_features(device_df, tractate_df, cc_df)
df
=
tractate_fe
.
join_features
(
device_df
,
tractate_df
,
cc_df
)
# # for i in df.columns:
# for i in df.columns:
# # print(i)
# print(i)
# # print(df.dtypes)
# print(df.dtypes)
# train_df, test_df = train_test_split(df, test_size=0.2)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
# all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS,
all_features
=
fe
.
build_features
(
df
,
tractate_fe
.
INT_COLUMNS
,
tractate_fe
.
FLOAT_COLUMNS
,
tractate_fe
.
CATEGORICAL_COLUMNS
,
# tractate_fe.CROSS_COLUMNS)
tractate_fe
.
CROSS_COLUMNS
)
# params = {"feature_columns": all_features, "hidden_units": [360, 200, 80, 2], "learning_rate": 0.2}
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
360
,
200
,
80
,
2
],
"learning_rate"
:
0.2
}
# model_path = str(Path("/data/files/model_tmp/tractate/").expanduser())
model_path
=
str
(
Path
(
"/data/files/model_tmp/tractate/"
)
.
expanduser
())
# if os.path.exists(model_path):
if
os
.
path
.
exists
(
model_path
):
# shutil.rmtree(model_path)
shutil
.
rmtree
(
model_path
)
# session_config = tf.compat.v1.ConfigProto()
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
# session_config.gpu_options.allow_growth = True
session_config
.
gpu_options
.
allow_growth
=
True
# session_config.gpu_options.per_process_gpu_memory_fraction = 0.7
session_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.7
# # session_config.inter_op_parallelism_threads = 1
# session_config.inter_op_parallelism_threads = 1
# # session_config.intra_op_parallelism_threads = 1
# session_config.intra_op_parallelism_threads = 1
# estimator_config = tf.estimator.RunConfig(session_config=session_config)
estimator_config
=
tf
.
estimator
.
RunConfig
(
session_config
=
session_config
)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
,
config
=
estimator_config
)
# # TODO 50000
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
50000
)
# train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=12000)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
# eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
res
=
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
# res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
print
(
"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
)
# print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print
(
res
[
0
])
# print(res[0])
ctr_auc
=
str
(
res
[
0
][
"ctr_auc"
])
# ctr_auc = str(res[0]["ctr_auc"])
ctcvr_auc
=
str
(
res
[
0
][
"ctcvr_auc"
])
# ctcvr_auc = str(res[0]["ctcvr_auc"])
print
(
"ctr_auc: "
+
ctr_auc
)
# print("ctr_auc: " + ctr_auc)
print
(
"ctcvr_auc: "
+
ctcvr_auc
)
# print("ctcvr_auc: " + ctcvr_auc)
print
(
"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
)
# print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
total_time
=
"{:.2f}"
.
format
((
time
.
time
()
-
time_begin
)
/
60
)
total_time
=
"{:.2f}"
.
format
((
time
.
time
()
-
time_begin
)
/
60
)
# model_export_path = str(Path("/data/files/models/tractate/").expanduser())
model_export_path
=
str
(
Path
(
"/data/files/models/tractate/"
)
.
expanduser
())
# save_path = model_export(model, all_features, model_export_path)
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
# print("save to: " + save_path)
print
(
"save to: "
+
save_path
)
# # TODO save model
set_essm_model_save_path
(
"tractate"
,
save_path
)
# # set_essm_model_save_path("tractate", save_path)
record_esmm_auc_to_db
(
"tractate"
,
ctr_auc
,
ctcvr_auc
,
total_time
,
save_path
)
# # record_esmm_auc_to_db("tractate", ctr_auc, ctcvr_auc, total_time, save_path)
print
(
"============================================================"
)
# print("============================================================")
#
save_path = get_essm_model_save_path("tractate")
save_path
=
get_essm_model_save_path
(
"tractate"
)
#
print("load path: " + save_path)
print
(
"load path: "
+
save_path
)
#
save_path = str(Path("~/data/models/tractate/1598236893").expanduser()) # local
save_path
=
str
(
Path
(
"~/data/models/tractate/1598236893"
)
.
expanduser
())
# local
save_path
=
"/data/files/models/tractate/1599128140"
# server
save_path
=
"/data/files/models/tractate/1599128140"
# server
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment