Commit 34646d86 authored by 赵威's avatar 赵威

try get data from redis

parent 3466617b
...@@ -224,6 +224,8 @@ def get_tractate_dict_from_redis(): ...@@ -224,6 +224,8 @@ def get_tractate_dict_from_redis():
"second_positions", "projects" "second_positions", "projects"
]: ]:
tmp[col_name] = elem.split(",") tmp[col_name] = elem.split(",")
if "" in tmp[col_name]:
tmp[col_name].remove("")
tmp[col_name + "_num"] = len(tmp[col_name]) tmp[col_name + "_num"] = len(tmp[col_name])
elif col_name in ["is_pure_author", "is_have_pure_reply", "is_have_reply"]: elif col_name in ["is_pure_author", "is_have_pure_reply", "is_have_reply"]:
if elem == "true": if elem == "true":
......
...@@ -13,70 +13,71 @@ from models.esmm.fe import click_fe, device_fe, fe, tractate_fe ...@@ -13,70 +13,71 @@ from models.esmm.fe import click_fe, device_fe, fe, tractate_fe
from models.esmm.input_fn import esmm_input_fn from models.esmm.input_fn import esmm_input_fn
from models.esmm.model import esmm_model_fn, model_export from models.esmm.model import esmm_model_fn, model_export
from models.esmm.tractate_model import (PREDICTION_ALL_COLUMNS, model_predict_tractate) from models.esmm.tractate_model import (PREDICTION_ALL_COLUMNS, model_predict_tractate)
from utils.cache import set_essm_model_save_path from utils.cache import get_essm_model_save_path, set_essm_model_save_path
def main(): def main():
time_begin = time.time() time_begin = time.time()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) # tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
tractate_train_columns = set(tractate_fe.INT_COLUMNS + tractate_fe.FLOAT_COLUMNS + tractate_fe.CATEGORICAL_COLUMNS) # tractate_train_columns = set(tractate_fe.INT_COLUMNS + tractate_fe.FLOAT_COLUMNS + tractate_fe.CATEGORICAL_COLUMNS)
print("features: " + str(len(tractate_train_columns))) # print("features: " + str(len(tractate_train_columns)))
tractate_predict_columns = set(PREDICTION_ALL_COLUMNS) # tractate_predict_columns = set(PREDICTION_ALL_COLUMNS)
print(tractate_predict_columns.difference(tractate_train_columns)) # print(tractate_predict_columns.difference(tractate_train_columns))
print(tractate_train_columns.difference(tractate_predict_columns)) # print(tractate_train_columns.difference(tractate_predict_columns))
assert tractate_predict_columns == tractate_train_columns # assert tractate_predict_columns == tractate_train_columns
# dataset_path = Path("~/data/cvr_data").expanduser() # local # # dataset_path = Path("~/data/cvr_data").expanduser() # local
dataset_path = Path("/srv/apps/node2vec_git/cvr_data/") # server # dataset_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(dataset_path) # tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(dataset_path)
tractate_df = tractate_fe.tractate_feature_engineering(tractate_df) # tractate_df = tractate_fe.tractate_feature_engineering(tractate_df)
device_df = device_fe.read_csv_data(dataset_path) # device_df = device_fe.read_csv_data(dataset_path)
device_df = device_fe.device_feature_engineering(device_df, "tractate") # device_df = device_fe.device_feature_engineering(device_df, "tractate")
# print(device_df.columns) # # print(device_df.columns)
# print(device_df.dtypes, "\n") # # print(device_df.dtypes, "\n")
cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df) # cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df)
df = tractate_fe.join_features(device_df, tractate_df, cc_df) # df = tractate_fe.join_features(device_df, tractate_df, cc_df)
# for i in df.columns: # # for i in df.columns:
# print(i) # # print(i)
# print(df.dtypes) # # print(df.dtypes)
train_df, test_df = train_test_split(df, test_size=0.2) # train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2) # train_df, val_df = train_test_split(train_df, test_size=0.2)
all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS) # all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS)
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1} # params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
model_path = str(Path("/data/files/model_tmp/tractate/").expanduser()) # model_path = str(Path("/data/files/model_tmp/tractate/").expanduser())
if os.path.exists(model_path): # if os.path.exists(model_path):
shutil.rmtree(model_path) # shutil.rmtree(model_path)
session_config = tf.compat.v1.ConfigProto() # session_config = tf.compat.v1.ConfigProto()
session_config.gpu_options.allow_growth = True # session_config.gpu_options.allow_growth = True
session_config.gpu_options.per_process_gpu_memory_fraction = 0.9 # session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
estimator_config = tf.estimator.RunConfig(session_config=session_config) # estimator_config = tf.estimator.RunConfig(session_config=session_config)
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config) # model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# TODO 50000 # # TODO 50000
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=20000) # train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=20000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False)) # eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec) # res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") # print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print(res[0]) # print(res[0])
print("ctr_auc: " + str(res[0]["ctr_auc"])) # print("ctr_auc: " + str(res[0]["ctr_auc"]))
print("ctcvr_auc: " + str(res[0]["ctcvr_auc"])) # print("ctcvr_auc: " + str(res[0]["ctcvr_auc"]))
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") # print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
model_export_path = str(Path("/data/files/models/tractate/").expanduser()) # model_export_path = str(Path("/data/files/models/tractate/").expanduser())
save_path = model_export(model, all_features, model_export_path) # save_path = model_export(model, all_features, model_export_path)
print("save to: " + save_path) # print("save to: " + save_path)
# TODO save model # # TODO save model
# set_essm_model_save_path("tractate", save_path) # # set_essm_model_save_path("tractate", save_path)
print("============================================================") # print("============================================================")
save_path = get_essm_model_save_path("diary")
print("load path: " + save_path)
# # save_path = str(Path("~/data/models/tractate/1596089465").expanduser()) # local # # save_path = str(Path("~/data/models/tractate/1596089465").expanduser()) # local
# save_path = "/data/files/models/tractate/1597390051" # server
predict_fn = tf.contrib.predictor.from_saved_model(save_path) predict_fn = tf.contrib.predictor.from_saved_model(save_path)
device_dict = device_fe.get_device_dict_from_redis() device_dict = device_fe.get_device_dict_from_redis()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment