Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
34646d86
Commit
34646d86
authored
Aug 17, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
try get data from redis
parent
3466617b
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
61 additions
and
58 deletions
+61
-58
tractate_fe.py
src/models/esmm/fe/tractate_fe.py
+2
-0
train_tractate.py
src/train_tractate.py
+59
-58
No files found.
src/models/esmm/fe/tractate_fe.py
View file @
34646d86
...
@@ -224,6 +224,8 @@ def get_tractate_dict_from_redis():
...
@@ -224,6 +224,8 @@ def get_tractate_dict_from_redis():
"second_positions"
,
"projects"
"second_positions"
,
"projects"
]:
]:
tmp
[
col_name
]
=
elem
.
split
(
","
)
tmp
[
col_name
]
=
elem
.
split
(
","
)
if
""
in
tmp
[
col_name
]:
tmp
[
col_name
]
.
remove
(
""
)
tmp
[
col_name
+
"_num"
]
=
len
(
tmp
[
col_name
])
tmp
[
col_name
+
"_num"
]
=
len
(
tmp
[
col_name
])
elif
col_name
in
[
"is_pure_author"
,
"is_have_pure_reply"
,
"is_have_reply"
]:
elif
col_name
in
[
"is_pure_author"
,
"is_have_pure_reply"
,
"is_have_reply"
]:
if
elem
==
"true"
:
if
elem
==
"true"
:
...
...
src/train_tractate.py
View file @
34646d86
...
@@ -13,70 +13,71 @@ from models.esmm.fe import click_fe, device_fe, fe, tractate_fe
...
@@ -13,70 +13,71 @@ from models.esmm.fe import click_fe, device_fe, fe, tractate_fe
from
models.esmm.input_fn
import
esmm_input_fn
from
models.esmm.input_fn
import
esmm_input_fn
from
models.esmm.model
import
esmm_model_fn
,
model_export
from
models.esmm.model
import
esmm_model_fn
,
model_export
from
models.esmm.tractate_model
import
(
PREDICTION_ALL_COLUMNS
,
model_predict_tractate
)
from
models.esmm.tractate_model
import
(
PREDICTION_ALL_COLUMNS
,
model_predict_tractate
)
from
utils.cache
import
set_essm_model_save_path
from
utils.cache
import
get_essm_model_save_path
,
set_essm_model_save_path
def
main
():
def
main
():
time_begin
=
time
.
time
()
time_begin
=
time
.
time
()
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
tractate_train_columns
=
set
(
tractate_fe
.
INT_COLUMNS
+
tractate_fe
.
FLOAT_COLUMNS
+
tractate_fe
.
CATEGORICAL_COLUMNS
)
# tractate_train_columns = set(tractate_fe.INT_COLUMNS + tractate_fe.FLOAT_COLUMNS + tractate_fe.CATEGORICAL_COLUMNS)
print
(
"features: "
+
str
(
len
(
tractate_train_columns
)))
# print("features: " + str(len(tractate_train_columns)))
tractate_predict_columns
=
set
(
PREDICTION_ALL_COLUMNS
)
# tractate_predict_columns = set(PREDICTION_ALL_COLUMNS)
print
(
tractate_predict_columns
.
difference
(
tractate_train_columns
))
# print(tractate_predict_columns.difference(tractate_train_columns))
print
(
tractate_train_columns
.
difference
(
tractate_predict_columns
))
# print(tractate_train_columns.difference(tractate_predict_columns))
assert
tractate_predict_columns
==
tractate_train_columns
# assert tractate_predict_columns == tractate_train_columns
# dataset_path = Path("~/data/cvr_data").expanduser() # local
# # dataset_path = Path("~/data/cvr_data").expanduser() # local
dataset_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
# dataset_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
tractate_df
,
tractate_click_df
,
tractate_conversion_df
=
tractate_fe
.
read_csv_data
(
dataset_path
)
# tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(dataset_path)
tractate_df
=
tractate_fe
.
tractate_feature_engineering
(
tractate_df
)
# tractate_df = tractate_fe.tractate_feature_engineering(tractate_df)
device_df
=
device_fe
.
read_csv_data
(
dataset_path
)
# device_df = device_fe.read_csv_data(dataset_path)
device_df
=
device_fe
.
device_feature_engineering
(
device_df
,
"tractate"
)
# device_df = device_fe.device_feature_engineering(device_df, "tractate")
# print(device_df.columns)
# # print(device_df.columns)
# print(device_df.dtypes, "\n")
# # print(device_df.dtypes, "\n")
cc_df
=
click_fe
.
click_feature_engineering
(
tractate_click_df
,
tractate_conversion_df
)
# cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df)
df
=
tractate_fe
.
join_features
(
device_df
,
tractate_df
,
cc_df
)
# df = tractate_fe.join_features(device_df, tractate_df, cc_df)
# for i in df.columns:
# # for i in df.columns:
# print(i)
# # print(i)
# print(df.dtypes)
# # print(df.dtypes)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
# train_df, test_df = train_test_split(df, test_size=0.2)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
all_features
=
fe
.
build_features
(
df
,
tractate_fe
.
INT_COLUMNS
,
tractate_fe
.
FLOAT_COLUMNS
,
tractate_fe
.
CATEGORICAL_COLUMNS
)
# all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
model_path
=
str
(
Path
(
"/data/files/model_tmp/tractate/"
)
.
expanduser
())
# model_path = str(Path("/data/files/model_tmp/tractate/").expanduser())
if
os
.
path
.
exists
(
model_path
):
# if os.path.exists(model_path):
shutil
.
rmtree
(
model_path
)
# shutil.rmtree(model_path)
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
# session_config = tf.compat.v1.ConfigProto()
session_config
.
gpu_options
.
allow_growth
=
True
# session_config.gpu_options.allow_growth = True
session_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.9
# session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
estimator_config
=
tf
.
estimator
.
RunConfig
(
session_config
=
session_config
)
# estimator_config = tf.estimator.RunConfig(session_config=session_config)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
,
config
=
estimator_config
)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# TODO 50000
# # TODO 50000
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
20000
)
# train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=20000)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
# eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
res
=
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
# res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
print
(
"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
)
# print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print
(
res
[
0
])
# print(res[0])
print
(
"ctr_auc: "
+
str
(
res
[
0
][
"ctr_auc"
]))
# print("ctr_auc: " + str(res[0]["ctr_auc"]))
print
(
"ctcvr_auc: "
+
str
(
res
[
0
][
"ctcvr_auc"
]))
# print("ctcvr_auc: " + str(res[0]["ctcvr_auc"]))
print
(
"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
)
# print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
model_export_path
=
str
(
Path
(
"/data/files/models/tractate/"
)
.
expanduser
())
# model_export_path = str(Path("/data/files/models/tractate/").expanduser())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
# save_path = model_export(model, all_features, model_export_path)
print
(
"save to: "
+
save_path
)
# print("save to: " + save_path)
# TODO save model
# # TODO save model
# set_essm_model_save_path("tractate", save_path)
# # set_essm_model_save_path("tractate", save_path)
print
(
"============================================================"
)
# print("============================================================")
save_path
=
get_essm_model_save_path
(
"diary"
)
print
(
"load path: "
+
save_path
)
# # save_path = str(Path("~/data/models/tractate/1596089465").expanduser()) # local
# # save_path = str(Path("~/data/models/tractate/1596089465").expanduser()) # local
# save_path = "/data/files/models/tractate/1597390051" # server
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
device_dict
=
device_fe
.
get_device_dict_from_redis
()
device_dict
=
device_fe
.
get_device_dict_from_redis
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment