Commit 41eea449 authored by 赵威's avatar 赵威

update save function

parent 78361361
......@@ -5,9 +5,9 @@ import time
import tensorflow as tf
from models.esmm.fe import device_fe as device_fe
from models.esmm.fe import diary_fe as diary_fe
from models.esmm.diary_model import model_predict_diary
from models.esmm.fe import device_fe, diary_fe, tractate_fe
from models.esmm.tractate_model import model_predict_tractate
from utils.cache import redis_client2
from utils.grey import recommed_service_category_device_id_by_tail
from utils.portrait import (user_portrait_tag3_get_candidate_dict, user_portrait_tag3_get_candidate_unread_list,
......@@ -32,7 +32,7 @@ def user_portrait_scan_info(device_dict, diary_dict, predict_fn, tail_number):
if (user_portrait_tag3_get_candidate_dict(device_id, "diary")):
all_count += 1
print(str(all_count) + ": " + device_id)
offline_predict(device_id, device_dict, diary_dict, predict_fn)
offline_predict_diary(device_id, device_dict, diary_dict, predict_fn)
print("all count: " + str(all_count))
print("scan done " + str(datetime.datetime.now()))
......@@ -40,7 +40,7 @@ def user_portrait_scan_info(device_dict, diary_dict, predict_fn, tail_number):
print(e)
def offline_predict(device_id, device_dict, diary_dict, predict_fn):
def offline_predict_diary(device_id, device_dict, diary_dict, predict_fn):
time_begin = time.time()
diary_ids = user_portrait_tag3_get_candidate_unread_list(device_id, "diary")
......@@ -61,11 +61,11 @@ def main():
diary_dict = diary_fe.get_diary_dict_from_redis()
print("redis data: " + str(len(device_dict)) + " " + str(len(diary_dict)))
save_path = "/home/gmuser/data/models/diary/1596083349"
predict_fn = tf.contrib.predictor.from_saved_model(save_path)
diary_save_path = "/home/gmuser/data/models/diary/1596083349"
diary_predict_fn = tf.contrib.predictor.from_saved_model(diary_save_path)
# device_id = "androidid_a25a1129c0b38f7b"
# offline_predict(device_id, device_dict, diary_dict, predict_fn)
# offline_predict_diary(device_id, device_dict, diary_dict, diary_predict_fn)
# res = user_portrait_tag3_get_candidate_unread_list(device_id, "diary")
# print(len(res))
......@@ -73,7 +73,7 @@ def main():
tail_number = sys.argv[1]
# "c", "d", "e", "f"
user_portrait_scan_info(device_dict, diary_dict, predict_fn, tail_number)
user_portrait_scan_info(device_dict, diary_dict, diary_predict_fn, tail_number)
if __name__ == "__main__":
......
......@@ -22,44 +22,44 @@ def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# # data_path = Path("~/data/cvr_data").expanduser() # local
# data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
# diary_df, diary_click_df, diary_conversion_df = diary_fe.read_csv_data(data_path)
# # print(diary_df.sample(1))
# diary_df = diary_fe.diary_feature_engineering(diary_df)
# # print(diary_df.sample(1))
# device_df = device_fe.read_csv_data(data_path)
# # print(diary_df.sample(1))
# device_df = device_fe.device_feature_engineering(device_df, "diary")
# # print(device_df.sample(1))
# cc_df = click_fe.click_feature_engineering(diary_click_df, diary_conversion_df)
# # print(cc_df.sample(1))
# df = diary_fe.join_features(device_df, diary_df, cc_df)
# # print(df.sample(1))
# # print(df.dtypes)
# train_df, test_df = train_test_split(df, test_size=0.2)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = fe.build_features(df, diary_fe.INT_COLUMNS, diary_fe.FLOAT_COLUMNS, diary_fe.CATEGORICAL_COLUMNS)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# model_path = str(Path("~/data/model_tmp/").expanduser())
# # if os.path.exists(model_path):
# # shutil.rmtree(model_path)
# session_config = tf.compat.v1.ConfigProto()
# session_config.gpu_options.allow_growth = True
# session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
# estimator_config = tf.estimator.RunConfig(session_config=session_config)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
# eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
# tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
# model_export_path = str(Path("~/data/models/diary").expanduser())
# save_path = model_export(model, all_features, model_export_path)
# print("save to: " + save_path)
# data_path = Path("~/data/cvr_data").expanduser() # local
data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
diary_df, diary_click_df, diary_conversion_df = diary_fe.read_csv_data(data_path)
# print(diary_df.sample(1))
diary_df = diary_fe.diary_feature_engineering(diary_df)
# print(diary_df.sample(1))
device_df = device_fe.read_csv_data(data_path)
# print(diary_df.sample(1))
device_df = device_fe.device_feature_engineering(device_df, "diary")
# print(device_df.sample(1))
cc_df = click_fe.click_feature_engineering(diary_click_df, diary_conversion_df)
# print(cc_df.sample(1))
df = diary_fe.join_features(device_df, diary_df, cc_df)
# print(df.sample(1))
# print(df.dtypes)
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
all_features = fe.build_features(df, diary_fe.INT_COLUMNS, diary_fe.FLOAT_COLUMNS, diary_fe.CATEGORICAL_COLUMNS)
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
model_path = str(Path("~/data/model_tmp/").expanduser())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
session_config = tf.compat.v1.ConfigProto()
session_config.gpu_options.allow_growth = True
session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
estimator_config = tf.estimator.RunConfig(session_config=session_config)
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
model_export_path = str(Path("~/data/models/diary").expanduser())
save_path = model_export(model, all_features, model_export_path)
print("save to: " + save_path)
diary_train_columns = set(diary_fe.INT_COLUMNS + diary_fe.FLOAT_COLUMNS + diary_fe.CATEGORICAL_COLUMNS)
diary_predict_columns = set(PREDICTION_ALL_COLUMNS)
......@@ -69,7 +69,7 @@ def main():
print("============================================================")
# save_path = str(Path("~/Desktop/models/1596012827").expanduser()) # local
save_path = "/home/gmuser/data/models/diary/1596083349" # server
# save_path = "/home/gmuser/data/models/diary/1596083349" # server
# tf.saved_model.load
......
......@@ -20,43 +20,43 @@ def main():
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
# # data_path = Path("~/data/cvr_data").expanduser() # local
# data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
# tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(data_path)
# tractate_df = tractate_fe.tractate_feature_engineering(tractate_df)
# device_df = device_fe.read_csv_data(data_path)
# device_df = device_fe.device_feature_engineering(device_df, "tractate")
# # print(device_df.columns)
# # print(device_df.dtypes, "\n")
# cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df)
# df = tractate_fe.join_features(device_df, tractate_df, cc_df)
# # for i in df.columns:
# # print(i)
# # print(df.dtypes)
# train_df, test_df = train_test_split(df, test_size=0.2)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# model_path = str(Path("~/data/model_tmp/").expanduser())
# # if os.path.exists(model_path):
# # shutil.rmtree(model_path)
# session_config = tf.compat.v1.ConfigProto()
# session_config.gpu_options.allow_growth = True
# session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
# estimator_config = tf.estimator.RunConfig(session_config=session_config)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
# eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
# tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
# model_export_path = str(Path("~/data/models/tractate/").expanduser())
# save_path = model_export(model, all_features, model_export_path)
# print("save to: " + save_path)
# data_path = Path("~/data/cvr_data").expanduser() # local
data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(data_path)
tractate_df = tractate_fe.tractate_feature_engineering(tractate_df)
device_df = device_fe.read_csv_data(data_path)
device_df = device_fe.device_feature_engineering(device_df, "tractate")
# print(device_df.columns)
# print(device_df.dtypes, "\n")
cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df)
df = tractate_fe.join_features(device_df, tractate_df, cc_df)
# for i in df.columns:
# print(i)
# print(df.dtypes)
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS)
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
model_path = str(Path("~/data/model_tmp/").expanduser())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
session_config = tf.compat.v1.ConfigProto()
session_config.gpu_options.allow_growth = True
session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
estimator_config = tf.estimator.RunConfig(session_config=session_config)
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
model_export_path = str(Path("~/data/models/tractate/").expanduser())
save_path = model_export(model, all_features, model_export_path)
print("save to: " + save_path)
tractate_train_columns = set(tractate_fe.INT_COLUMNS + tractate_fe.FLOAT_COLUMNS + tractate_fe.CATEGORICAL_COLUMNS)
tractate_predict_columns = set(PREDICTION_ALL_COLUMNS)
......@@ -67,7 +67,7 @@ def main():
print("============================================================")
# # save_path = str(Path("~/data/models/tractate/1596089465").expanduser()) # local
save_path = "/home/gmuser/data/models/tractate/1596092061" # server
# save_path = "/home/gmuser/data/models/tractate/1596092061" # server
predict_fn = tf.contrib.predictor.from_saved_model(save_path)
device_dict = device_fe.get_device_dict_from_redis()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment