Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
41eea449
Commit
41eea449
authored
Jul 30, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update save function
parent
78361361
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
85 additions
and
85 deletions
+85
-85
main_portrait.py
src/main_portrait.py
+8
-8
train_diary.py
src/train_diary.py
+39
-39
train_tractate.py
src/train_tractate.py
+38
-38
No files found.
src/main_portrait.py
View file @
41eea449
...
...
@@ -5,9 +5,9 @@ import time
import
tensorflow
as
tf
from
models.esmm.fe
import
device_fe
as
device_fe
from
models.esmm.fe
import
diary_fe
as
diary_fe
from
models.esmm.diary_model
import
model_predict_diary
from
models.esmm.fe
import
device_fe
,
diary_fe
,
tractate_fe
from
models.esmm.tractate_model
import
model_predict_tractate
from
utils.cache
import
redis_client2
from
utils.grey
import
recommed_service_category_device_id_by_tail
from
utils.portrait
import
(
user_portrait_tag3_get_candidate_dict
,
user_portrait_tag3_get_candidate_unread_list
,
...
...
@@ -32,7 +32,7 @@ def user_portrait_scan_info(device_dict, diary_dict, predict_fn, tail_number):
if
(
user_portrait_tag3_get_candidate_dict
(
device_id
,
"diary"
)):
all_count
+=
1
print
(
str
(
all_count
)
+
": "
+
device_id
)
offline_predict
(
device_id
,
device_dict
,
diary_dict
,
predict_fn
)
offline_predict
_diary
(
device_id
,
device_dict
,
diary_dict
,
predict_fn
)
print
(
"all count: "
+
str
(
all_count
))
print
(
"scan done "
+
str
(
datetime
.
datetime
.
now
()))
...
...
@@ -40,7 +40,7 @@ def user_portrait_scan_info(device_dict, diary_dict, predict_fn, tail_number):
print
(
e
)
def
offline_predict
(
device_id
,
device_dict
,
diary_dict
,
predict_fn
):
def
offline_predict
_diary
(
device_id
,
device_dict
,
diary_dict
,
predict_fn
):
time_begin
=
time
.
time
()
diary_ids
=
user_portrait_tag3_get_candidate_unread_list
(
device_id
,
"diary"
)
...
...
@@ -61,11 +61,11 @@ def main():
diary_dict
=
diary_fe
.
get_diary_dict_from_redis
()
print
(
"redis data: "
+
str
(
len
(
device_dict
))
+
" "
+
str
(
len
(
diary_dict
)))
save_path
=
"/home/gmuser/data/models/diary/1596083349"
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
diary_
save_path
=
"/home/gmuser/data/models/diary/1596083349"
diary_predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
diary_
save_path
)
# device_id = "androidid_a25a1129c0b38f7b"
# offline_predict
(device_id, device_dict, diary_dict,
predict_fn)
# offline_predict
_diary(device_id, device_dict, diary_dict, diary_
predict_fn)
# res = user_portrait_tag3_get_candidate_unread_list(device_id, "diary")
# print(len(res))
...
...
@@ -73,7 +73,7 @@ def main():
tail_number
=
sys
.
argv
[
1
]
# "c", "d", "e", "f"
user_portrait_scan_info
(
device_dict
,
diary_dict
,
predict_fn
,
tail_number
)
user_portrait_scan_info
(
device_dict
,
diary_dict
,
diary_
predict_fn
,
tail_number
)
if
__name__
==
"__main__"
:
...
...
src/train_diary.py
View file @
41eea449
...
...
@@ -22,44 +22,44 @@ def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
#
#
data_path = Path("~/data/cvr_data").expanduser() # local
#
data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
#
diary_df, diary_click_df, diary_conversion_df = diary_fe.read_csv_data(data_path)
#
#
print(diary_df.sample(1))
#
diary_df = diary_fe.diary_feature_engineering(diary_df)
#
#
print(diary_df.sample(1))
#
device_df = device_fe.read_csv_data(data_path)
#
#
print(diary_df.sample(1))
#
device_df = device_fe.device_feature_engineering(device_df, "diary")
#
#
print(device_df.sample(1))
#
cc_df = click_fe.click_feature_engineering(diary_click_df, diary_conversion_df)
#
#
print(cc_df.sample(1))
#
df = diary_fe.join_features(device_df, diary_df, cc_df)
#
#
print(df.sample(1))
#
#
print(df.dtypes)
#
train_df, test_df = train_test_split(df, test_size=0.2)
#
train_df, val_df = train_test_split(train_df, test_size=0.2)
#
all_features = fe.build_features(df, diary_fe.INT_COLUMNS, diary_fe.FLOAT_COLUMNS, diary_fe.CATEGORICAL_COLUMNS)
#
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
#
model_path = str(Path("~/data/model_tmp/").expanduser())
#
#
if os.path.exists(model_path):
#
#
shutil.rmtree(model_path)
#
session_config = tf.compat.v1.ConfigProto()
#
session_config.gpu_options.allow_growth = True
#
session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
#
estimator_config = tf.estimator.RunConfig(session_config=session_config)
#
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
#
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
#
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
#
tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
#
model_export_path = str(Path("~/data/models/diary").expanduser())
#
save_path = model_export(model, all_features, model_export_path)
#
print("save to: " + save_path)
# data_path = Path("~/data/cvr_data").expanduser() # local
data_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
diary_df
,
diary_click_df
,
diary_conversion_df
=
diary_fe
.
read_csv_data
(
data_path
)
# print(diary_df.sample(1))
diary_df
=
diary_fe
.
diary_feature_engineering
(
diary_df
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
read_csv_data
(
data_path
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
device_feature_engineering
(
device_df
,
"diary"
)
# print(device_df.sample(1))
cc_df
=
click_fe
.
click_feature_engineering
(
diary_click_df
,
diary_conversion_df
)
# print(cc_df.sample(1))
df
=
diary_fe
.
join_features
(
device_df
,
diary_df
,
cc_df
)
# print(df.sample(1))
# print(df.dtypes)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
fe
.
build_features
(
df
,
diary_fe
.
INT_COLUMNS
,
diary_fe
.
FLOAT_COLUMNS
,
diary_fe
.
CATEGORICAL_COLUMNS
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
session_config
.
gpu_options
.
allow_growth
=
True
session_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.9
estimator_config
=
tf
.
estimator
.
RunConfig
(
session_config
=
session_config
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
,
config
=
estimator_config
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
50000
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
model_export_path
=
str
(
Path
(
"~/data/models/diary"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
print
(
"save to: "
+
save_path
)
diary_train_columns
=
set
(
diary_fe
.
INT_COLUMNS
+
diary_fe
.
FLOAT_COLUMNS
+
diary_fe
.
CATEGORICAL_COLUMNS
)
diary_predict_columns
=
set
(
PREDICTION_ALL_COLUMNS
)
...
...
@@ -69,7 +69,7 @@ def main():
print
(
"============================================================"
)
# save_path = str(Path("~/Desktop/models/1596012827").expanduser()) # local
save_path
=
"/home/gmuser/data/models/diary/1596083349"
# server
#
save_path = "/home/gmuser/data/models/diary/1596083349" # server
# tf.saved_model.load
...
...
src/train_tractate.py
View file @
41eea449
...
...
@@ -20,43 +20,43 @@ def main():
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
#
#
data_path = Path("~/data/cvr_data").expanduser() # local
#
data_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
#
tractate_df, tractate_click_df, tractate_conversion_df = tractate_fe.read_csv_data(data_path)
#
tractate_df = tractate_fe.tractate_feature_engineering(tractate_df)
#
device_df = device_fe.read_csv_data(data_path)
#
device_df = device_fe.device_feature_engineering(device_df, "tractate")
#
#
print(device_df.columns)
#
#
print(device_df.dtypes, "\n")
#
cc_df = click_fe.click_feature_engineering(tractate_click_df, tractate_conversion_df)
#
df = tractate_fe.join_features(device_df, tractate_df, cc_df)
#
#
for i in df.columns:
#
#
print(i)
#
#
print(df.dtypes)
#
train_df, test_df = train_test_split(df, test_size=0.2)
#
train_df, val_df = train_test_split(train_df, test_size=0.2)
#
all_features = fe.build_features(df, tractate_fe.INT_COLUMNS, tractate_fe.FLOAT_COLUMNS, tractate_fe.CATEGORICAL_COLUMNS)
#
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
#
model_path = str(Path("~/data/model_tmp/").expanduser())
#
#
if os.path.exists(model_path):
#
#
shutil.rmtree(model_path)
#
session_config = tf.compat.v1.ConfigProto()
#
session_config.gpu_options.allow_growth = True
#
session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
#
estimator_config = tf.estimator.RunConfig(session_config=session_config)
#
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
#
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000)
#
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
#
tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
#
model_export_path = str(Path("~/data/models/tractate/").expanduser())
#
save_path = model_export(model, all_features, model_export_path)
#
print("save to: " + save_path)
# data_path = Path("~/data/cvr_data").expanduser() # local
data_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
tractate_df
,
tractate_click_df
,
tractate_conversion_df
=
tractate_fe
.
read_csv_data
(
data_path
)
tractate_df
=
tractate_fe
.
tractate_feature_engineering
(
tractate_df
)
device_df
=
device_fe
.
read_csv_data
(
data_path
)
device_df
=
device_fe
.
device_feature_engineering
(
device_df
,
"tractate"
)
# print(device_df.columns)
# print(device_df.dtypes, "\n")
cc_df
=
click_fe
.
click_feature_engineering
(
tractate_click_df
,
tractate_conversion_df
)
df
=
tractate_fe
.
join_features
(
device_df
,
tractate_df
,
cc_df
)
# for i in df.columns:
# print(i)
# print(df.dtypes)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
fe
.
build_features
(
df
,
tractate_fe
.
INT_COLUMNS
,
tractate_fe
.
FLOAT_COLUMNS
,
tractate_fe
.
CATEGORICAL_COLUMNS
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
session_config
.
gpu_options
.
allow_growth
=
True
session_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.9
estimator_config
=
tf
.
estimator
.
RunConfig
(
session_config
=
session_config
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
,
config
=
estimator_config
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
50000
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
model_export_path
=
str
(
Path
(
"~/data/models/tractate/"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
print
(
"save to: "
+
save_path
)
tractate_train_columns
=
set
(
tractate_fe
.
INT_COLUMNS
+
tractate_fe
.
FLOAT_COLUMNS
+
tractate_fe
.
CATEGORICAL_COLUMNS
)
tractate_predict_columns
=
set
(
PREDICTION_ALL_COLUMNS
)
...
...
@@ -67,7 +67,7 @@ def main():
print
(
"============================================================"
)
# # save_path = str(Path("~/data/models/tractate/1596089465").expanduser()) # local
save_path
=
"/home/gmuser/data/models/tractate/1596092061"
# server
#
save_path = "/home/gmuser/data/models/tractate/1596092061" # server
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
device_dict
=
device_fe
.
get_device_dict_from_redis
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment