Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
52f719f1
Commit
52f719f1
authored
Aug 21, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
train diar
parent
6550e929
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
58 additions
and
61 deletions
+58
-61
train_diary.py
src/train_diary.py
+58
-61
No files found.
src/train_diary.py
View file @
52f719f1
...
...
@@ -19,73 +19,70 @@ from utils.cache import get_essm_model_save_path, set_essm_model_save_path
def
main
():
time_begin
=
time
.
time
()
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
# # os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# diary_train_columns = set(diary_fe.INT_COLUMNS + diary_fe.FLOAT_COLUMNS + diary_fe.CATEGORICAL_COLUMNS)
# print("features: " + str(len(diary_train_columns)))
# diary_predict_columns = set(PREDICTION_ALL_COLUMNS)
# print(diary_predict_columns.difference(diary_train_columns))
# print(diary_train_columns.difference(diary_predict_columns))
# assert diary_predict_columns == diary_train_columns
# # dataset_path = Path("~/data/cvr_data").expanduser() # local
# dataset_path = Path("/srv/apps/node2vec_git/cvr_data/") # server
# diary_df, diary_click_df, diary_conversion_df = diary_fe.read_csv_data(dataset_path)
# # print(diary_df.sample(1))
# diary_df = diary_fe.diary_feature_engineering(diary_df)
# # print(diary_df.sample(1))
# device_df = device_fe.read_csv_data(dataset_path)
# # print(diary_df.sample(1))
# device_df = device_fe.device_feature_engineering(device_df, "diary")
# # print(device_df.sample(1))
# cc_df = click_fe.click_feature_engineering(diary_click_df, diary_conversion_df)
# # print(cc_df.sample(1))
# df = diary_fe.join_features(device_df, diary_df, cc_df)
# # print(df.sample(1))
# # print(df.dtypes)
# train_df, test_df = train_test_split(df, test_size=0.2)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = fe.build_features(df, diary_fe.INT_COLUMNS, diary_fe.FLOAT_COLUMNS, diary_fe.CATEGORICAL_COLUMNS)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# model_path = str(Path("/data/files/model_tmp/diary/").expanduser())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
# session_config = tf.compat.v1.ConfigProto()
# session_config.gpu_options.allow_growth = True
# session_config.gpu_options.per_process_gpu_memory_fraction = 0.9
# estimator_config = tf.estimator.RunConfig(session_config=session_config)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
# # TODO 50000
# train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=15000)
# eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
# res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
# print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
# print(res[0])
# print("ctr_auc: " + str(res[0]["ctr_auc"]))
# print("ctcvr_auc: " + str(res[0]["ctcvr_auc"]))
# print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
# model_export_path = str(Path("/data/files/models/diary").expanduser())
# save_path = model_export(model, all_features, model_export_path)
# print("save to: " + save_path)
# # TODO save
# # set_essm_model_save_path("diary", save_path)
# print("============================================================")
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
diary_train_columns
=
set
(
diary_fe
.
INT_COLUMNS
+
diary_fe
.
FLOAT_COLUMNS
+
diary_fe
.
CATEGORICAL_COLUMNS
)
print
(
"features: "
+
str
(
len
(
diary_train_columns
)))
diary_predict_columns
=
set
(
PREDICTION_ALL_COLUMNS
)
print
(
diary_predict_columns
.
difference
(
diary_train_columns
))
print
(
diary_train_columns
.
difference
(
diary_predict_columns
))
assert
diary_predict_columns
==
diary_train_columns
# dataset_path = Path("~/data/cvr_data").expanduser() # local
dataset_path
=
Path
(
"/srv/apps/node2vec_git/cvr_data/"
)
# server
diary_df
,
diary_click_df
,
diary_conversion_df
=
diary_fe
.
read_csv_data
(
dataset_path
)
# print(diary_df.sample(1))
diary_df
=
diary_fe
.
diary_feature_engineering
(
diary_df
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
read_csv_data
(
dataset_path
)
# print(diary_df.sample(1))
device_df
=
device_fe
.
device_feature_engineering
(
device_df
,
"diary"
)
# print(device_df.sample(1))
cc_df
=
click_fe
.
click_feature_engineering
(
diary_click_df
,
diary_conversion_df
)
# print(cc_df.sample(1))
df
=
diary_fe
.
join_features
(
device_df
,
diary_df
,
cc_df
)
# print(df.sample(1))
# print(df.dtypes)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
fe
.
build_features
(
df
,
diary_fe
.
INT_COLUMNS
,
diary_fe
.
FLOAT_COLUMNS
,
diary_fe
.
CATEGORICAL_COLUMNS
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"/data/files/model_tmp/diary/"
)
.
expanduser
())
if
os
.
path
.
exists
(
model_path
):
shutil
.
rmtree
(
model_path
)
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
session_config
.
gpu_options
.
allow_growth
=
True
session_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.9
estimator_config
=
tf
.
estimator
.
RunConfig
(
session_config
=
session_config
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
,
config
=
estimator_config
)
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
max_steps
=
50000
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
res
=
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
print
(
"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
)
print
(
res
[
0
])
print
(
"ctr_auc: "
+
str
(
res
[
0
][
"ctr_auc"
]))
print
(
"ctcvr_auc: "
+
str
(
res
[
0
][
"ctcvr_auc"
]))
print
(
"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
)
model_export_path
=
str
(
Path
(
"/data/files/models/diary"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
print
(
"save to: "
+
save_path
)
set_essm_model_save_path
(
"diary"
,
save_path
)
print
(
"============================================================"
)
# save_path = str(Path("~/Desktop/models/1596012827").expanduser()) # local
# save_path = "/data/files/models/diary/1597390452" # server
# tf.saved_model.load
# TODO
save_path
=
get_essm_model_save_path
(
"diary"
)
print
(
"load path: "
+
save_path
)
# save_path = get_essm_model_save_path("diary")
# print("load path: " + save_path)
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
device_dict
=
device_fe
.
get_device_dict_from_redis
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment