Commit 77a9aa4a authored by 赵威's avatar 赵威

removet tractate service feature

parent cc73abcc
......@@ -116,15 +116,15 @@ TRACTATE_COLUMNS = [
"first_positions_num",
"second_positions_num",
"projects_num",
"is_related_service",
"effect_second_skip_num",
"business_second_skip_num",
"effect_second_skip_rate",
"business_second_skip_rate",
"service_id",
"service_price",
"service_sold_num",
"service_city",
# "is_related_service",
# "effect_second_skip_num",
# "business_second_skip_num",
# "effect_second_skip_rate",
# "business_second_skip_rate",
# "service_id",
# "service_price",
# "service_sold_num",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
......@@ -197,10 +197,10 @@ INT_COLUMNS = [
"first_positions_num",
"second_positions_num",
"projects_num",
"effect_second_skip_num",
"business_second_skip_num",
"service_price",
"service_sold_num",
# "effect_second_skip_num",
# "business_second_skip_num",
# "service_price",
# "service_sold_num",
]
FLOAT_COLUMNS = [
"one_ctr",
......@@ -235,8 +235,8 @@ FLOAT_COLUMNS = [
"sixty_browse_duration_avg",
"ninety_browse_duration_avg",
"history_browse_duration_avg",
"effect_second_skip_rate",
"business_second_skip_rate",
# "effect_second_skip_rate",
# "business_second_skip_rate",
]
CATEGORICAL_COLUMNS = [
"device_id",
......@@ -290,9 +290,9 @@ CATEGORICAL_COLUMNS = [
"click_tractate_id3",
"click_tractate_id4",
"click_tractate_id5",
"is_related_service",
"service_id",
"service_city",
# "is_related_service",
# "service_id",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
......@@ -408,13 +408,13 @@ def tractate_feature_engineering(tractate_df):
df["is_have_reply"] = df["is_have_reply"].astype(int)
df["show_tag_id"] = df["show_tag_id"].astype(str)
df["is_related_service"] = df["is_related_service"].astype(int)
df["service_id"] = df["service_id"].astype(str)
# df["is_related_service"] = df["is_related_service"].astype(int)
# df["service_id"] = df["service_id"].astype(str)
# df["recommend_service_id"] = df["recommend_service_id"].astype(str)
# df["recommend_service_price"] = df["recommend_service_price"].astype(str)
df["service_id"] = df["service_city"].fillna("-1")
df["service_city"] = df["service_city"].fillna("")
# df["service_id"] = df["service_id"].fillna("-1")
# df["service_city"] = df["service_city"].fillna("")
# df["recommend_service_id"] = df["recommend_service_id"].fillna("-1")
# df["recommend_service_city"] = df["recommend_service_city"].fillna("")
......
......@@ -28,18 +28,8 @@ def esmm_model_fn(features, labels, mode, params):
cvr_logits = tf.layers.dense(last_cvr_layer, units=head.logits_dimension, kernel_initializer=tf.glorot_uniform_initializer())
ctr_preds = tf.sigmoid(ctr_logits)
cvr_preds = tf.sigmoid(cvr_logits)
ctcvr_preds = tf.multiply(ctr_preds, cvr_preds)
print("@@@@@@@@@@@")
print(ctr_logits)
print(ctr_preds)
print(ctcvr_preds)
print("@@@@@@@@@@@")
a = tf.multiply(0.8, ctr_preds)
b = tf.multiply(0.2, cvr_preds)
c = tf.multiply(a, b)
print(a)
print(c)
print("@@@@@@@@@@@")
# ctcvr_preds = tf.multiply(ctr_preds, cvr_preds)
ctcvr_preds = tf.multiply(tf.multiply(0.8, ctr_preds), tf.multiply(0.2, cvr_preds))
# optimizer = tf.compat.v1.train.AdamOptimizer()
# click_label = features["click_label"]
......
......@@ -78,11 +78,11 @@ _int_columns = [
"first_positions_num",
"second_positions_num",
"projects_num",
"is_related_service",
"effect_second_skip_num",
"business_second_skip_num",
"service_price",
"service_sold_num",
# "is_related_service",
# "effect_second_skip_num",
# "business_second_skip_num",
# "service_price",
# "service_sold_num",
]
_float_columns = [
"one_ctr",
......@@ -117,8 +117,8 @@ _float_columns = [
"sixty_browse_duration_avg",
"ninety_browse_duration_avg",
"history_browse_duration_avg",
"effect_second_skip_rate",
"business_second_skip_rate",
# "effect_second_skip_rate",
# "business_second_skip_rate",
]
_categorical_columns = [
"device_id",
......@@ -166,8 +166,8 @@ _categorical_columns = [
"click_tractate_id3",
"click_tractate_id4",
"click_tractate_id5",
"service_id",
"service_city",
# "service_id",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
......
......@@ -62,7 +62,8 @@ def main():
estimator_config = tf.estimator.RunConfig(session_config=session_config)
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=45000)
# TODO 45000
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=12000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
res = tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment