Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
84a1ed9a
Commit
84a1ed9a
authored
Sep 08, 2020
by
赵威
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'fe' into 'offic'
Fe See merge request
!19
parents
b4c9cbb8
35f23248
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
46 additions
and
45 deletions
+46
-45
tractate_fe.py
src/models/esmm/fe/tractate_fe.py
+32
-32
model.py
src/models/esmm/model.py
+2
-1
tractate_model.py
src/models/esmm/tractate_model.py
+12
-12
No files found.
src/models/esmm/fe/tractate_fe.py
View file @
84a1ed9a
...
...
@@ -116,18 +116,18 @@ TRACTATE_COLUMNS = [
"first_positions_num"
,
"second_positions_num"
,
"projects_num"
,
"is_related_service"
,
"effect_second_skip_num"
,
"business_second_skip_num"
,
"effect_second_skip_rate"
,
"business_second_skip_rate"
,
"service_id"
,
"service_price"
,
"service_sold_num"
,
"service_city"
,
"recommend_service_id"
,
"recommend_service_city"
,
"recommend_service_price"
,
#
"is_related_service",
#
"effect_second_skip_num",
#
"business_second_skip_num",
#
"effect_second_skip_rate",
#
"business_second_skip_rate",
#
"service_id",
#
"service_price",
#
"service_sold_num",
#
"service_city",
#
"recommend_service_id",
#
"recommend_service_city",
#
"recommend_service_price",
]
INT_COLUMNS
=
[
...
...
@@ -197,10 +197,10 @@ INT_COLUMNS = [
"first_positions_num"
,
"second_positions_num"
,
"projects_num"
,
"effect_second_skip_num"
,
"business_second_skip_num"
,
"service_price"
,
"service_sold_num"
,
#
"effect_second_skip_num",
#
"business_second_skip_num",
#
"service_price",
#
"service_sold_num",
]
FLOAT_COLUMNS
=
[
"one_ctr"
,
...
...
@@ -235,8 +235,8 @@ FLOAT_COLUMNS = [
"sixty_browse_duration_avg"
,
"ninety_browse_duration_avg"
,
"history_browse_duration_avg"
,
"effect_second_skip_rate"
,
"business_second_skip_rate"
,
#
"effect_second_skip_rate",
#
"business_second_skip_rate",
]
CATEGORICAL_COLUMNS
=
[
"device_id"
,
...
...
@@ -290,12 +290,12 @@ CATEGORICAL_COLUMNS = [
"click_tractate_id3"
,
"click_tractate_id4"
,
"click_tractate_id5"
,
"is_related_service"
,
"service_id"
,
"service_city"
,
"recommend_service_id"
,
"recommend_service_city"
,
"recommend_service_price"
,
#
"is_related_service",
#
"service_id",
#
"service_city",
#
"recommend_service_id",
#
"recommend_service_city",
#
"recommend_service_price",
# "device_fd2",
# "device_sd2",
# "device_fs2",
...
...
@@ -408,15 +408,15 @@ def tractate_feature_engineering(tractate_df):
df
[
"is_have_reply"
]
=
df
[
"is_have_reply"
]
.
astype
(
int
)
df
[
"show_tag_id"
]
=
df
[
"show_tag_id"
]
.
astype
(
str
)
df
[
"is_related_service"
]
=
df
[
"is_related_service"
]
.
astype
(
int
)
df
[
"service_id"
]
=
df
[
"service_id"
]
.
astype
(
str
)
df
[
"recommend_service_id"
]
=
df
[
"recommend_service_id"
]
.
astype
(
str
)
df
[
"recommend_service_price"
]
=
df
[
"recommend_service_price"
]
.
astype
(
str
)
#
df["is_related_service"] = df["is_related_service"].astype(int)
#
df["service_id"] = df["service_id"].astype(str)
#
df["recommend_service_id"] = df["recommend_service_id"].astype(str)
#
df["recommend_service_price"] = df["recommend_service_price"].astype(str)
df
[
"service_id"
]
=
df
[
"service_city
"
]
.
fillna
(
"-1"
)
df
[
"service_city"
]
=
df
[
"service_city"
]
.
fillna
(
""
)
df
[
"recommend_service_id"
]
=
df
[
"recommend_service_id"
]
.
fillna
(
"-1"
)
df
[
"recommend_service_city"
]
=
df
[
"recommend_service_city"
]
.
fillna
(
""
)
# df["service_id"] = df["service_id
"].fillna("-1")
#
df["service_city"] = df["service_city"].fillna("")
#
df["recommend_service_id"] = df["recommend_service_id"].fillna("-1")
#
df["recommend_service_city"] = df["recommend_service_city"].fillna("")
df
=
df
[
TRACTATE_COLUMNS
]
...
...
src/models/esmm/model.py
View file @
84a1ed9a
...
...
@@ -28,7 +28,8 @@ def esmm_model_fn(features, labels, mode, params):
cvr_logits
=
tf
.
layers
.
dense
(
last_cvr_layer
,
units
=
head
.
logits_dimension
,
kernel_initializer
=
tf
.
glorot_uniform_initializer
())
ctr_preds
=
tf
.
sigmoid
(
ctr_logits
)
cvr_preds
=
tf
.
sigmoid
(
cvr_logits
)
ctcvr_preds
=
tf
.
multiply
(
ctr_preds
,
cvr_preds
)
# ctcvr_preds = tf.multiply(ctr_preds, cvr_preds)
ctcvr_preds
=
tf
.
multiply
(
tf
.
multiply
(
2.0
,
ctr_preds
),
tf
.
multiply
(
1.0
,
cvr_preds
))
# optimizer = tf.compat.v1.train.AdamOptimizer()
# click_label = features["click_label"]
...
...
src/models/esmm/tractate_model.py
View file @
84a1ed9a
...
...
@@ -78,11 +78,11 @@ _int_columns = [
"first_positions_num"
,
"second_positions_num"
,
"projects_num"
,
"is_related_service"
,
"effect_second_skip_num"
,
"business_second_skip_num"
,
"service_price"
,
"service_sold_num"
,
#
"is_related_service",
#
"effect_second_skip_num",
#
"business_second_skip_num",
#
"service_price",
#
"service_sold_num",
]
_float_columns
=
[
"one_ctr"
,
...
...
@@ -117,8 +117,8 @@ _float_columns = [
"sixty_browse_duration_avg"
,
"ninety_browse_duration_avg"
,
"history_browse_duration_avg"
,
"effect_second_skip_rate"
,
"business_second_skip_rate"
,
#
"effect_second_skip_rate",
#
"business_second_skip_rate",
]
_categorical_columns
=
[
"device_id"
,
...
...
@@ -166,11 +166,11 @@ _categorical_columns = [
"click_tractate_id3"
,
"click_tractate_id4"
,
"click_tractate_id5"
,
"service_id"
,
"service_city"
,
"recommend_service_id"
,
"recommend_service_city"
,
"recommend_service_price"
,
#
"service_id",
#
"service_city",
#
"recommend_service_id",
#
"recommend_service_city",
#
"recommend_service_price",
# "device_fd2",
# "device_sd2",
# "device_fs2",
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment