Commit 84a1ed9a authored by 赵威's avatar 赵威

Merge branch 'fe' into 'offic'

Fe

See merge request !19
parents b4c9cbb8 35f23248
......@@ -116,18 +116,18 @@ TRACTATE_COLUMNS = [
"first_positions_num",
"second_positions_num",
"projects_num",
"is_related_service",
"effect_second_skip_num",
"business_second_skip_num",
"effect_second_skip_rate",
"business_second_skip_rate",
"service_id",
"service_price",
"service_sold_num",
"service_city",
"recommend_service_id",
"recommend_service_city",
"recommend_service_price",
# "is_related_service",
# "effect_second_skip_num",
# "business_second_skip_num",
# "effect_second_skip_rate",
# "business_second_skip_rate",
# "service_id",
# "service_price",
# "service_sold_num",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
]
INT_COLUMNS = [
......@@ -197,10 +197,10 @@ INT_COLUMNS = [
"first_positions_num",
"second_positions_num",
"projects_num",
"effect_second_skip_num",
"business_second_skip_num",
"service_price",
"service_sold_num",
# "effect_second_skip_num",
# "business_second_skip_num",
# "service_price",
# "service_sold_num",
]
FLOAT_COLUMNS = [
"one_ctr",
......@@ -235,8 +235,8 @@ FLOAT_COLUMNS = [
"sixty_browse_duration_avg",
"ninety_browse_duration_avg",
"history_browse_duration_avg",
"effect_second_skip_rate",
"business_second_skip_rate",
# "effect_second_skip_rate",
# "business_second_skip_rate",
]
CATEGORICAL_COLUMNS = [
"device_id",
......@@ -290,12 +290,12 @@ CATEGORICAL_COLUMNS = [
"click_tractate_id3",
"click_tractate_id4",
"click_tractate_id5",
"is_related_service",
"service_id",
"service_city",
"recommend_service_id",
"recommend_service_city",
"recommend_service_price",
# "is_related_service",
# "service_id",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
# "device_fd2",
# "device_sd2",
# "device_fs2",
......@@ -408,15 +408,15 @@ def tractate_feature_engineering(tractate_df):
df["is_have_reply"] = df["is_have_reply"].astype(int)
df["show_tag_id"] = df["show_tag_id"].astype(str)
df["is_related_service"] = df["is_related_service"].astype(int)
df["service_id"] = df["service_id"].astype(str)
df["recommend_service_id"] = df["recommend_service_id"].astype(str)
df["recommend_service_price"] = df["recommend_service_price"].astype(str)
# df["is_related_service"] = df["is_related_service"].astype(int)
# df["service_id"] = df["service_id"].astype(str)
# df["recommend_service_id"] = df["recommend_service_id"].astype(str)
# df["recommend_service_price"] = df["recommend_service_price"].astype(str)
df["service_id"] = df["service_city"].fillna("-1")
df["service_city"] = df["service_city"].fillna("")
df["recommend_service_id"] = df["recommend_service_id"].fillna("-1")
df["recommend_service_city"] = df["recommend_service_city"].fillna("")
# df["service_id"] = df["service_id"].fillna("-1")
# df["service_city"] = df["service_city"].fillna("")
# df["recommend_service_id"] = df["recommend_service_id"].fillna("-1")
# df["recommend_service_city"] = df["recommend_service_city"].fillna("")
df = df[TRACTATE_COLUMNS]
......
......@@ -28,7 +28,8 @@ def esmm_model_fn(features, labels, mode, params):
cvr_logits = tf.layers.dense(last_cvr_layer, units=head.logits_dimension, kernel_initializer=tf.glorot_uniform_initializer())
ctr_preds = tf.sigmoid(ctr_logits)
cvr_preds = tf.sigmoid(cvr_logits)
ctcvr_preds = tf.multiply(ctr_preds, cvr_preds)
# ctcvr_preds = tf.multiply(ctr_preds, cvr_preds)
ctcvr_preds = tf.multiply(tf.multiply(2.0, ctr_preds), tf.multiply(1.0, cvr_preds))
# optimizer = tf.compat.v1.train.AdamOptimizer()
# click_label = features["click_label"]
......
......@@ -78,11 +78,11 @@ _int_columns = [
"first_positions_num",
"second_positions_num",
"projects_num",
"is_related_service",
"effect_second_skip_num",
"business_second_skip_num",
"service_price",
"service_sold_num",
# "is_related_service",
# "effect_second_skip_num",
# "business_second_skip_num",
# "service_price",
# "service_sold_num",
]
_float_columns = [
"one_ctr",
......@@ -117,8 +117,8 @@ _float_columns = [
"sixty_browse_duration_avg",
"ninety_browse_duration_avg",
"history_browse_duration_avg",
"effect_second_skip_rate",
"business_second_skip_rate",
# "effect_second_skip_rate",
# "business_second_skip_rate",
]
_categorical_columns = [
"device_id",
......@@ -166,11 +166,11 @@ _categorical_columns = [
"click_tractate_id3",
"click_tractate_id4",
"click_tractate_id5",
"service_id",
"service_city",
"recommend_service_id",
"recommend_service_city",
"recommend_service_price",
# "service_id",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
# "device_fd2",
# "device_sd2",
# "device_fs2",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment