Commit 90112286 authored by 赵威's avatar 赵威

remove service feature

parent d948b8d0
......@@ -87,11 +87,11 @@ _int_columns = [
"first_positions_num",
"second_positions_num",
"projects_num",
"is_related_service",
"effect_second_skip_num",
"business_second_skip_num",
"service_price",
"service_sold_num",
# "is_related_service",
# "effect_second_skip_num",
# "business_second_skip_num",
# "service_price",
# "service_sold_num",
]
_float_columns = [
"one_ctr",
......@@ -174,11 +174,11 @@ _categorical_columns = [
"click_diary_id3",
"click_diary_id4",
"click_diary_id5",
"service_id",
"service_city",
"recommend_service_id",
"recommend_service_city",
"recommend_service_price",
# "service_id",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
"device_fd2",
"device_sd2",
"device_fs2",
......
......@@ -124,18 +124,18 @@ DIARY_COLUMNS = [
"first_positions_num",
"second_positions_num",
"projects_num",
"is_related_service",
"effect_second_skip_num",
"business_second_skip_num",
"effect_second_skip_rate",
"business_second_skip_rate",
"service_id",
"service_price",
"service_sold_num",
"service_city",
"recommend_service_id",
"recommend_service_city",
"recommend_service_price",
# "is_related_service",
# "effect_second_skip_num",
# "business_second_skip_num",
# "effect_second_skip_rate",
# "business_second_skip_rate",
# "service_id",
# "service_price",
# "service_sold_num",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
]
INT_COLUMNS = [
"active_days",
......@@ -213,10 +213,10 @@ INT_COLUMNS = [
"first_positions_num",
"second_positions_num",
"projects_num",
"effect_second_skip_num",
"business_second_skip_num",
"service_price",
"service_sold_num",
# "effect_second_skip_num",
# "business_second_skip_num",
# "service_price",
# "service_sold_num",
]
FLOAT_COLUMNS = [
"one_ctr",
......@@ -251,8 +251,8 @@ FLOAT_COLUMNS = [
"sixty_browse_duration_avg",
"ninety_browse_duration_avg",
"history_browse_duration_avg",
"effect_second_skip_rate",
"business_second_skip_rate",
# "effect_second_skip_rate",
# "business_second_skip_rate",
]
CATEGORICAL_COLUMNS = [
"device_id",
......@@ -305,12 +305,12 @@ CATEGORICAL_COLUMNS = [
"click_diary_id3",
"click_diary_id4",
"click_diary_id5",
"is_related_service",
"service_id",
"service_city",
"recommend_service_id",
"recommend_service_city",
"recommend_service_price",
# "is_related_service",
# "service_id",
# "service_city",
# "recommend_service_id",
# "recommend_service_city",
# "recommend_service_price",
"device_fd2",
"device_sd2",
"device_fs2",
......@@ -422,15 +422,15 @@ def diary_feature_engineering(df):
diary_df["is_have_pure_reply"] = diary_df["is_have_pure_reply"].astype(int)
diary_df["is_have_reply"] = diary_df["is_have_reply"].astype(int)
diary_df["is_related_service"] = diary_df["is_related_service"].astype(int)
diary_df["service_id"] = diary_df["service_id"].astype(str)
diary_df["recommend_service_id"] = diary_df["recommend_service_id"].astype(str)
diary_df["recommend_service_price"] = diary_df["recommend_service_price"].astype(str)
# diary_df["is_related_service"] = diary_df["is_related_service"].astype(int)
# diary_df["service_id"] = diary_df["service_id"].astype(str)
# diary_df["recommend_service_id"] = diary_df["recommend_service_id"].astype(str)
# diary_df["recommend_service_price"] = diary_df["recommend_service_price"].astype(str)
diary_df["service_id"] = diary_df["service_id"].fillna("-1")
diary_df["service_city"] = diary_df["service_city"].fillna("")
diary_df["recommend_service_id"] = diary_df["recommend_service_id"].fillna("-1")
diary_df["recommend_service_city"] = diary_df["recommend_service_city"].fillna("")
# diary_df["service_id"] = diary_df["service_id"].fillna("-1")
# diary_df["service_city"] = diary_df["service_city"].fillna("")
# diary_df["recommend_service_id"] = diary_df["recommend_service_id"].fillna("-1")
# diary_df["recommend_service_city"] = diary_df["recommend_service_city"].fillna("")
diary_df = diary_df[DIARY_COLUMNS]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment