Commit 932e5762 authored by 赵威's avatar 赵威

update fe

parent f55521ba
...@@ -10,8 +10,8 @@ import pandas as pd ...@@ -10,8 +10,8 @@ import pandas as pd
import tensorflow as tf import tensorflow as tf
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from models.esmm.fe import (click_feature_engineering, device_feature_engineering, diary_feature_engineering, from models.esmm import device_fe as device_fe
get_device_dict_from_redis, get_diary_dict_from_redis, join_features, read_csv_data) from models.esmm import diary_fe as diary_fe
from models.esmm.input_fn import build_features, esmm_input_fn from models.esmm.input_fn import build_features, esmm_input_fn
from models.esmm.model import esmm_model_fn, model_export, model_predict_diary from models.esmm.model import esmm_model_fn, model_export, model_predict_diary
...@@ -25,15 +25,18 @@ def main(): ...@@ -25,15 +25,18 @@ def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data").expanduser()) # device_df, diary_df, click_df, conversion_df = diary_fe.read_csv_data(Path("~/data/cvr_data").expanduser())
device_df, diary_df, click_df, conversion_df = read_csv_data(Path("/srv/apps/node2vec_git/cvr_data/")) device_df, diary_df, click_df, conversion_df = diary_fe.read_csv_data(Path("/srv/apps/node2vec_git/cvr_data/"))
# print(diary_df.sample(1)) # print(diary_df.sample(1))
device_df = device_feature_engineering(device_df) device_df = device_fe.device_feature_engineering(device_df)
# print(device_df.sample(1)) print(device_df.sample(1))
diary_df = diary_feature_engineering(diary_df) diary_df = diary_fe.diary_feature_engineering(diary_df)
# print(diary_df.sample(1)) print(diary_df.sample(1))
cc_df = click_feature_engineering(click_df, conversion_df) cc_df = diary_fe.click_feature_engineering(click_df, conversion_df)
df = join_features(device_df, diary_df, cc_df) print(cc_df.sample(1))
df = diary_fe.join_features(device_df, diary_df, cc_df)
print(df.sample(1))
print(df.dtypes)
train_df, test_df = train_test_split(df, test_size=0.2) train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2) train_df, val_df = train_test_split(train_df, test_size=0.2)
...@@ -41,8 +44,8 @@ def main(): ...@@ -41,8 +44,8 @@ def main():
all_features = build_features(df) all_features = build_features(df)
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1} params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
model_path = str(Path("~/data/model_tmp/").expanduser()) model_path = str(Path("~/data/model_tmp/").expanduser())
if os.path.exists(model_path): # if os.path.exists(model_path):
shutil.rmtree(model_path) # shutil.rmtree(model_path)
session_config = tf.compat.v1.ConfigProto() session_config = tf.compat.v1.ConfigProto()
session_config.gpu_options.allow_growth = True session_config.gpu_options.allow_growth = True
...@@ -50,7 +53,8 @@ def main(): ...@@ -50,7 +53,8 @@ def main():
estimator_config = tf.estimator.RunConfig(session_config=session_config) estimator_config = tf.estimator.RunConfig(session_config=session_config)
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config) model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path, config=estimator_config)
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=50000) # TODO 50000
train_spec = tf.estimator.TrainSpec(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), max_steps=20000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False)) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: esmm_input_fn(val_df, shuffle=False))
tf.estimator.train_and_evaluate(model, train_spec, eval_spec) tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
...@@ -76,8 +80,8 @@ def main(): ...@@ -76,8 +80,8 @@ def main():
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988" # "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# ] # ]
device_dict = get_device_dict_from_redis() device_dict = diary_fe.get_device_dict_from_redis()
diary_dict = get_diary_dict_from_redis() diary_dict = diary_fe.get_diary_dict_from_redis()
device_ids = list(device_dict.keys())[:20] device_ids = list(device_dict.keys())[:20]
diary_ids = list(diary_dict.keys()) diary_ids = list(diary_dict.keys())
......
from utils.cache import redis_db_client
# "channel_first", "city_first", "model_first",
DIARY_DEVICE_COLUMNS = [
"device_id", "active_type", "active_days", "past_consume_ability_history", "potential_consume_ability_history",
"price_sensitive_history", "first_demands", "second_demands", "first_solutions", "second_solutions", "first_positions",
"second_positions", "projects"
]
def get_device_dict_from_redis():
"""
return: {device_id: {first_demands: [], city_first: ""}}
"""
# TODO
db_key = "cvr:db:device2"
column_key = db_key + ":column"
columns = str(redis_db_client.get(column_key), "utf-8").split("|")
d = redis_db_client.hgetall(db_key)
res = {}
for i in d.values():
row_list = str(i, "utf-8").split("|")
tmp = {}
for (index, elem) in enumerate(row_list):
col_name = columns[index]
if col_name in [
"first_demands", "second_demands", "first_solutions", "second_solutions", "first_positions",
"second_positions", "projects"
]:
tmp[col_name] = elem.split(",")
else:
tmp[col_name] = elem
res[tmp["device_id"]] = tmp
return res
def device_feature_engineering(df):
device_df = df.copy()
device_df["first_demands"] = device_df["first_demands"].str.split(",")
device_df["second_demands"] = device_df["second_demands"].str.split(",")
device_df["first_solutions"] = device_df["first_solutions"].str.split(",")
device_df["second_solutions"] = device_df["second_solutions"].str.split(",")
device_df["first_positions"] = device_df["first_positions"].str.split(",")
device_df["second_positions"] = device_df["second_positions"].str.split(",")
device_df["projects"] = device_df["projects"].str.split(",")
device_df["first_demands"] = device_df["first_demands"].apply(lambda d: d if isinstance(d, list) else [])
device_df["second_demands"] = device_df["second_demands"].apply(lambda d: d if isinstance(d, list) else [])
device_df["first_solutions"] = device_df["first_solutions"].apply(lambda d: d if isinstance(d, list) else [])
device_df["second_solutions"] = device_df["second_solutions"].apply(lambda d: d if isinstance(d, list) else [])
device_df["first_positions"] = device_df["first_positions"].apply(lambda d: d if isinstance(d, list) else [])
device_df["second_positions"] = device_df["second_positions"].apply(lambda d: d if isinstance(d, list) else [])
device_df["projects"] = device_df["projects"].apply(lambda d: d if isinstance(d, list) else [])
device_df["city_first"] = device_df["city_first"].fillna("")
device_df["model_first"] = device_df["model_first"].fillna("")
nullseries = device_df.isnull().sum()
print("device:")
print(nullseries[nullseries > 0])
print(device_df.shape)
return device_df[DIARY_DEVICE_COLUMNS]
This diff is collapsed.
This diff is collapsed.
...@@ -6,7 +6,7 @@ from tensorflow import feature_column as fc ...@@ -6,7 +6,7 @@ from tensorflow import feature_column as fc
from tensorflow.python.estimator.canned import head as head_lib from tensorflow.python.estimator.canned import head as head_lib
from tensorflow.python.ops.losses import losses from tensorflow.python.ops.losses import losses
from .fe import device_diary_fe from .diary_fe import device_diary_fe
from .utils import common_elements, nth_element from .utils import common_elements, nth_element
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment