Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
f55521ba
Commit
f55521ba
authored
Jul 28, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
try predict
parent
2897f11b
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
14 additions
and
13 deletions
+14
-13
main.py
src/main.py
+6
-9
fe.py
src/models/esmm/fe.py
+8
-4
No files found.
src/main.py
View file @
f55521ba
...
...
@@ -25,6 +25,7 @@ def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data").expanduser())
device_df
,
diary_df
,
click_df
,
conversion_df
=
read_csv_data
(
Path
(
"/srv/apps/node2vec_git/cvr_data/"
))
# print(diary_df.sample(1))
device_df
=
device_feature_engineering
(
device_df
)
...
...
@@ -40,8 +41,8 @@ def main():
all_features
=
build_features
(
df
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
#
if os.path.exists(model_path):
#
shutil.rmtree(model_path)
if
os
.
path
.
exists
(
model_path
):
shutil
.
rmtree
(
model_path
)
session_config
=
tf
.
compat
.
v1
.
ConfigProto
()
session_config
.
gpu_options
.
allow_growth
=
True
...
...
@@ -53,9 +54,9 @@ def main():
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
shuffle
=
False
))
tf
.
estimator
.
train_and_evaluate
(
model
,
train_spec
,
eval_spec
)
#
model.train(input_fn=lambda: esmm_input_fn(train_df, shuffle=True))
#
metrics = model.evaluate(input_fn=lambda: esmm_input_fn(val_df, False))
#
print("metrics: " + str(metrics))
model
.
train
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
))
metrics
=
model
.
evaluate
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
False
))
print
(
"metrics: "
+
str
(
metrics
))
model_export_path
=
str
(
Path
(
"~/data/models/"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
...
...
@@ -69,10 +70,6 @@ def main():
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
# for i in range(5):
# test_300 = test_df.sample(300)
# model_predict(test_300, predict_fn)
print
(
"=============================="
)
# device_id = "861601036552944"
# diary_ids = [
...
...
src/models/esmm/fe.py
View file @
f55521ba
...
...
@@ -19,7 +19,8 @@ def read_csv_data(dataset_path):
def
get_device_dict_from_redis
():
db_key
=
"cvr:db:device"
# TODO
db_key
=
"cvr:db:device2"
column_key
=
db_key
+
":column"
columns
=
str
(
redis_db_client
.
get
(
column_key
),
"utf-8"
)
.
split
(
"|"
)
d
=
redis_db_client
.
hgetall
(
db_key
)
...
...
@@ -86,15 +87,18 @@ def device_feature_engineering(df):
device_df
[
"second_positions"
]
=
device_df
[
"second_positions"
]
.
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_df
[
"projects"
]
=
device_df
[
"projects"
]
.
apply
(
lambda
d
:
d
if
isinstance
(
d
,
list
)
else
[])
device_df
[
"city_first"
]
=
device_df
[
"city_first"
]
.
fillna
(
""
)
device_df
[
"model_first"
]
=
device_df
[
"model_first"
]
.
fillna
(
""
)
nullseries
=
device_df
.
isnull
()
.
sum
()
print
(
"device:"
)
print
(
nullseries
[
nullseries
>
0
])
print
(
device_df
.
shape
)
device_columns
=
[
"device_id"
,
"active_type"
,
"active_days"
,
"
past_consume_ability_history"
,
"potential
_consume_ability_history"
,
"p
rice_sensitive_history"
,
"first_demands"
,
"second_demands"
,
"first_solutions"
,
"second_solutions"
,
"first_posi
tions"
,
"second_positions"
,
"projects"
"device_id"
,
"active_type"
,
"active_days"
,
"
channel_first"
,
"city_first"
,
"model_first"
,
"past
_consume_ability_history"
,
"p
otential_consume_ability_history"
,
"price_sensitive_history"
,
"first_demands"
,
"second_demands"
,
"first_solu
tions"
,
"second_
solutions"
,
"first_positions"
,
"second_
positions"
,
"projects"
]
return
device_df
[
device_columns
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment