Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
94cc8bd3
Commit
94cc8bd3
authored
Jul 21, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
get data from redis
parent
45ec36ab
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
64 additions
and
35 deletions
+64
-35
cache.py
src/cache.py
+1
-0
fe.py
src/esmm/fe.py
+23
-0
input_fn.py
src/esmm/input_fn.py
+0
-0
model.py
src/esmm/model.py
+0
-0
utils.py
src/esmm/utils.py
+0
-0
main.py
src/main.py
+40
-35
No files found.
src/
utils
.py
→
src/
cache
.py
View file @
94cc8bd3
...
...
@@ -4,3 +4,4 @@ redis_client = redis.StrictRedis.from_url("redis://:ReDis!GmTx*0aN6@172.16.40.13
redis_client2
=
redis
.
StrictRedis
.
from_url
(
"redis://:ReDis!GmTx*0aN9@172.16.40.173:6379"
)
redis_client3
=
redis
.
StrictRedis
.
from_url
(
"redis://:ReDis!GmTx*0aN12@172.16.40.164:6379"
)
redis_client4
=
redis
.
StrictRedis
.
from_url
(
"redis://:XfkMCCdWDIU
%
ls$h@172.16.50.145:6379"
)
redis_db_client
=
redis
.
StrictRedis
.
from_url
(
"redis://:ReDis!GmTx*0aN14@172.16.40.146:6379"
)
src/
models/
esmm/fe.py
→
src/esmm/fe.py
View file @
94cc8bd3
import
json
import
pandas
as
pd
import
tensorflow
as
tf
from
...cache
import
redis_db_client
from
.utils
import
common_elements
,
nth_element
...
...
@@ -13,6 +16,26 @@ def read_csv_data(dataset_path):
return
device_df
.
sample
(
10000
),
diary_df
.
sample
(
5000
),
click_df
,
conversion_df
def
_get_data_from_redis
(
key
):
column_key
=
key
+
":column"
d
=
redis_db_client
.
hgetall
(
key
)
tmp
=
d
.
values
()
lists
=
[]
for
i
in
tmp
:
lists
.
append
(
str
(
i
,
"utf-8"
)
.
split
(
"|"
))
columns
=
str
(
redis_db_client
.
get
(
column_key
),
"utf-8"
)
.
split
(
"|"
)
df
=
pd
.
DataFrame
(
lists
,
columns
=
columns
)
return
df
def
get_device_df_from_redis
():
return
_get_data_from_redis
(
"cvr:db:device"
)
def
get_diary_df_from_redis
():
return
_get_data_from_redis
(
"cvr:db:content:diary"
)
def
device_feature_engineering
(
df
):
device_df
=
df
.
copy
()
...
...
src/
models/
esmm/input_fn.py
→
src/esmm/input_fn.py
View file @
94cc8bd3
File moved
src/
models/
esmm/model.py
→
src/esmm/model.py
View file @
94cc8bd3
File moved
src/
models/
esmm/utils.py
→
src/esmm/utils.py
View file @
94cc8bd3
File moved
src/main.py
View file @
94cc8bd3
...
...
@@ -8,47 +8,52 @@ from pathlib import Path
import
tensorflow
as
tf
from
sklearn.model_selection
import
train_test_split
from
models.
esmm.fe
import
(
click_feature_engineering
,
device_feature_engineering
,
diary_feature_engineering
,
join_features
,
read_csv_data
)
from
models.
esmm.input_fn
import
build_features
,
esmm_input_fn
from
models.
esmm.model
import
esmm_model_fn
,
model_export
,
model_predict
from
esmm.fe
import
(
click_feature_engineering
,
device_feature_engineering
,
diary_feature_engineering
,
join_features
,
read_csv_data
,
get_device_df_from_redis
,
get_diary_df_from_redis
)
from
esmm.input_fn
import
build_features
,
esmm_input_fn
from
esmm.model
import
esmm_model_fn
,
model_export
,
model_predict
# tf.compat.v1.enable_eager_execution()
def
main
():
time_begin
=
time
.
time
()
device_df
,
diary_df
,
click_df
,
conversion_df
=
read_csv_data
(
Path
(
"~/data/cvr_data/"
))
device_df
=
device_feature_engineering
(
device_df
)
diary_df
=
diary_feature_engineering
(
diary_df
)
cc_df
=
click_feature_engineering
(
click_df
,
conversion_df
)
df
=
join_features
(
device_df
,
diary_df
,
cc_df
)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
all_features
=
build_features
(
df
)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
if
os
.
path
.
exists
(
model_path
):
shutil
.
rmtree
(
model_path
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
)
print
(
"train"
)
model
.
train
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
steps
=
5000
)
metrics
=
model
.
evaluate
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
False
),
steps
=
5000
)
print
(
"metrics: "
+
str
(
metrics
))
model_export_path
=
str
(
Path
(
"~/data/models/"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
print
(
"save to: "
+
save_path
)
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
for
i
in
range
(
10
):
test_300
=
test_df
.
sample
(
300
)
model_predict
(
test_300
,
predict_fn
)
df
=
get_device_df_from_redis
()
df2
=
get_diary_df_from_redis
()
print
(
df
.
size
)
print
(
df2
.
size
)
# device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data/"))
# device_df = device_feature_engineering(device_df)
# diary_df = diary_feature_engineering(diary_df)
# cc_df = click_feature_engineering(click_df, conversion_df)
# df = join_features(device_df, diary_df, cc_df)
# train_df, test_df = train_test_split(df, test_size=0.2)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = build_features(df)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# model_path = str(Path("~/data/model_tmp/").expanduser())
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
# model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path)
# print("train")
# model.train(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), steps=5000)
# metrics = model.evaluate(input_fn=lambda: esmm_input_fn(val_df, False), steps=5000)
# print("metrics: " + str(metrics))
# model_export_path = str(Path("~/data/models/").expanduser())
# save_path = model_export(model, all_features, model_export_path)
# print("save to: " + save_path)
# predict_fn = tf.contrib.predictor.from_saved_model(save_path)
# for i in range(10):
# test_300 = test_df.sample(300)
# model_predict(test_300, predict_fn)
total_time
=
(
time
.
time
()
-
time_begin
)
/
60
print
(
"cost {:.2f} mins at {}"
.
format
(
total_time
,
datetime
.
now
()))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment