Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
a08d32a5
Commit
a08d32a5
authored
Jul 21, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
get data from redis
parent
75dcbb86
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
110 additions
and
33 deletions
+110
-33
main.py
src/main.py
+38
-30
fe.py
src/models/esmm/fe.py
+65
-1
utils.py
src/models/esmm/utils.py
+7
-2
No files found.
src/main.py
View file @
a08d32a5
...
...
@@ -5,11 +5,12 @@ import timeit
from
datetime
import
datetime
from
pathlib
import
Path
import
pandas
as
pd
import
tensorflow
as
tf
from
sklearn.model_selection
import
train_test_split
from
models.esmm.fe
import
(
click_feature_engineering
,
device_feature_engineering
,
diary_feature_engineering
,
get_device_df_from_redis
,
get_diary_df_from_redis
,
join_features
,
read_csv_data
)
get_device_df_from_redis
,
get_diary_df_from_redis
,
join_
device_diary
,
join_
features
,
read_csv_data
)
from
models.esmm.input_fn
import
build_features
,
esmm_input_fn
from
models.esmm.model
import
esmm_model_fn
,
model_export
,
model_predict
...
...
@@ -18,51 +19,58 @@ from models.esmm.model import esmm_model_fn, model_export, model_predict
def
main
():
time_begin
=
time
.
time
()
# df = get_device_df_from_redis()
df2
=
get_diary_df_from_redis
()
# print(df2.sample(1))
# print(df.size)
# print(df2.size)
# a = device_feature_engineering(df)
# print(a.size)
b
=
diary_feature_engineering
(
df2
,
from_redis
=
True
)
print
(
b
.
sample
(
10
))
device_df
,
diary_df
,
click_df
,
conversion_df
=
read_csv_data
(
Path
(
"~/data/cvr_data/"
))
# print(diary_df.sample(1))
# device_df = device_feature_engineering(device_df)
device_df
=
device_feature_engineering
(
device_df
)
# print(device_df.sample(1))
diary_df
=
diary_feature_engineering
(
diary_df
)
# print(diary_df.sample(1))
#
cc_df = click_feature_engineering(click_df, conversion_df)
#
df = join_features(device_df, diary_df, cc_df)
cc_df
=
click_feature_engineering
(
click_df
,
conversion_df
)
df
=
join_features
(
device_df
,
diary_df
,
cc_df
)
#
train_df, test_df = train_test_split(df, test_size=0.2)
#
train_df, val_df = train_test_split(train_df, test_size=0.2)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
#
all_features = build_features(df)
all_features
=
build_features
(
df
)
#
params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
#
model_path = str(Path("~/data/model_tmp/").expanduser())
#
if os.path.exists(model_path):
#
shutil.rmtree(model_path)
#
model = tf.estimator.Estimator(model_fn=esmm_model_fn, params=params, model_dir=model_path)
params
=
{
"feature_columns"
:
all_features
,
"hidden_units"
:
[
64
,
32
],
"learning_rate"
:
0.1
}
model_path
=
str
(
Path
(
"~/data/model_tmp/"
)
.
expanduser
())
if
os
.
path
.
exists
(
model_path
):
shutil
.
rmtree
(
model_path
)
model
=
tf
.
estimator
.
Estimator
(
model_fn
=
esmm_model_fn
,
params
=
params
,
model_dir
=
model_path
)
#
print("train")
#
model.train(input_fn=lambda: esmm_input_fn(train_df, shuffle=True), steps=5000)
#
metrics = model.evaluate(input_fn=lambda: esmm_input_fn(val_df, False), steps=5000)
#
print("metrics: " + str(metrics))
print
(
"train"
)
model
.
train
(
input_fn
=
lambda
:
esmm_input_fn
(
train_df
,
shuffle
=
True
),
steps
=
5000
)
metrics
=
model
.
evaluate
(
input_fn
=
lambda
:
esmm_input_fn
(
val_df
,
False
),
steps
=
5000
)
print
(
"metrics: "
+
str
(
metrics
))
#
model_export_path = str(Path("~/data/models/").expanduser())
#
save_path = model_export(model, all_features, model_export_path)
#
print("save to: " + save_path)
model_export_path
=
str
(
Path
(
"~/data/models/"
)
.
expanduser
())
save_path
=
model_export
(
model
,
all_features
,
model_export_path
)
print
(
"save to: "
+
save_path
)
#
predict_fn = tf.contrib.predictor.from_saved_model(save_path)
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
# for i in range(10):
# test_300 = test_df.sample(300)
# model_predict(test_300, predict_fn)
print
(
"=============================="
)
device_id
=
"861601036552944"
diary_ids
=
[
"16195283"
,
"16838351"
,
"17161073"
,
"17297878"
,
"17307484"
,
"17396235"
,
"16418737"
,
"16995481"
,
"17312201"
,
"12237988"
]
df
=
get_device_df_from_redis
()
df2
=
get_diary_df_from_redis
()
redis_device_df
=
device_feature_engineering
(
df
)
redis_diary_df
=
diary_feature_engineering
(
df2
,
from_redis
=
True
)
res
=
join_device_diary
(
device_id
,
diary_ids
,
redis_device_df
,
redis_diary_df
)
print
(
len
(
res
))
model_predict
(
res
,
predict_fn
)
total_time
=
(
time
.
time
()
-
time_begin
)
/
60
print
(
"cost {:.2f} mins at {}"
.
format
(
total_time
,
datetime
.
now
()))
...
...
src/models/esmm/fe.py
View file @
a08d32a5
...
...
@@ -11,7 +11,8 @@ def read_csv_data(dataset_path):
click_df
=
pd
.
read_csv
(
dataset_path
.
joinpath
(
"click.csv"
),
sep
=
"|"
)
conversion_df
=
pd
.
read_csv
(
dataset_path
.
joinpath
(
"click_cvr.csv"
),
sep
=
"|"
)
# TODO remove sample
return
device_df
.
sample
(
10000
),
diary_df
.
sample
(
5000
),
click_df
,
conversion_df
# return device_df.sample(10000), diary_df.sample(5000), click_df, conversion_df
return
device_df
,
diary_df
,
click_df
,
conversion_df
def
_get_data_from_redis
(
key
):
...
...
@@ -192,3 +193,66 @@ def join_features(device_df, diary_df, cc_df):
# df.drop(col, inplace=True, axis=1)
df
.
drop
(
drop_columns
,
inplace
=
True
,
axis
=
1
)
return
df
def
join_device_diary
(
device_id
,
diary_ids
,
device_df
,
diary_df
):
a_df
=
device_df
.
loc
[
device_df
[
"device_id"
]
==
device_id
]
b_df
=
diary_df
.
loc
[
diary_df
[
"card_id"
]
.
isin
(
diary_ids
)]
b_df
[
"device_id"
]
=
device_id
df
=
pd
.
merge
(
a_df
,
b_df
,
how
=
"left"
,
on
=
"device_id"
)
df
[
"first_demands"
]
=
df
[[
"first_demands_x"
,
"first_demands_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"second_demands"
]
=
df
[[
"second_demands_x"
,
"second_demands_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"first_solutions"
]
=
df
[[
"first_solutions_x"
,
"first_solutions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"second_solutions"
]
=
df
[[
"second_solutions_x"
,
"second_solutions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"first_positions"
]
=
df
[[
"first_positions_x"
,
"second_positions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"second_positions"
]
=
df
[[
"second_positions_x"
,
"second_positions_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"projects"
]
=
df
[[
"projects_x"
,
"projects_y"
]]
.
apply
(
lambda
x
:
common_elements
(
*
x
),
axis
=
1
)
df
[
"device_fd"
]
=
df
[
"first_demands_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_sd"
]
=
df
[
"second_demands_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_fs"
]
=
df
[
"first_solutions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_ss"
]
=
df
[
"second_solutions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_fp"
]
=
df
[
"first_positions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_sp"
]
=
df
[
"second_positions_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"device_p"
]
=
df
[
"projects_x"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_fd"
]
=
df
[
"first_demands_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_sd"
]
=
df
[
"second_demands_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_fs"
]
=
df
[
"first_solutions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_ss"
]
=
df
[
"second_solutions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_fp"
]
=
df
[
"first_positions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_sp"
]
=
df
[
"second_positions_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"content_p"
]
=
df
[
"projects_y"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fd1"
]
=
df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fd2"
]
=
df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"fd3"
]
=
df
[
"first_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"sd1"
]
=
df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"sd2"
]
=
df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"sd3"
]
=
df
[
"second_demands"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"fs1"
]
=
df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fs2"
]
=
df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"fs3"
]
=
df
[
"first_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"ss1"
]
=
df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"ss2"
]
=
df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"ss3"
]
=
df
[
"second_solutions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"fp1"
]
=
df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"fp2"
]
=
df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"fp3"
]
=
df
[
"first_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"sp1"
]
=
df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"sp2"
]
=
df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"sp3"
]
=
df
[
"second_positions"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
df
[
"p1"
]
=
df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
0
))
df
[
"p2"
]
=
df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
1
))
df
[
"p3"
]
=
df
[
"projects"
]
.
apply
(
lambda
x
:
nth_element
(
x
,
2
))
drop_columns
=
[
"first_demands_x"
,
"first_demands_y"
,
"first_demands"
,
"second_demands_x"
,
"second_demands_y"
,
"second_demands"
,
"first_solutions_x"
,
"first_solutions_y"
,
"first_solutions"
,
"second_solutions_x"
,
"second_solutions_y"
,
"second_solutions"
,
"first_positions_x"
,
"first_positions_y"
,
"first_positions"
,
"second_positions_x"
,
"second_positions_y"
,
"second_positions"
,
"projects_x"
,
"projects_y"
,
"projects"
]
df
.
drop
(
drop_columns
,
inplace
=
True
,
axis
=
1
)
return
df
src/models/esmm/utils.py
View file @
a08d32a5
from
collections
import
Counter
import
pandas
as
pd
def
common_elements
(
lst1
,
lst2
):
return
[
element
for
element
in
lst1
if
element
in
lst2
]
def
common_elements
(
lst1
,
lst2
,
n
=
3
):
a
=
Counter
(
lst1
)
b
=
Counter
(
lst2
)
interactions
=
a
&
b
return
list
(
interactions
.
elements
())[:
n
]
def
nth_element
(
lst
,
n
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment