Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
G
gm_strategy_cvr
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
gm_strategy_cvr
Commits
a0f81d00
Commit
a0f81d00
authored
Jul 22, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
pickle file
parent
2b8f52b9
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
24 additions
and
22 deletions
+24
-22
main.py
src/main.py
+24
-22
No files found.
src/main.py
View file @
a0f81d00
...
@@ -37,17 +37,17 @@ def time_cost(func):
...
@@ -37,17 +37,17 @@ def time_cost(func):
def
main
():
def
main
():
time_begin
=
time
.
time
()
time_begin
=
time
.
time
()
device_df
,
diary_df
,
click_df
,
conversion_df
=
read_csv_data
(
Path
(
"~/data/cvr_data/"
))
#
device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data/"))
# print(diary_df.sample(1))
#
#
print(diary_df.sample(1))
device_df
=
device_feature_engineering
(
device_df
)
#
device_df = device_feature_engineering(device_df)
# print(device_df.sample(1))
#
#
print(device_df.sample(1))
diary_df
=
diary_feature_engineering
(
diary_df
)
#
diary_df = diary_feature_engineering(diary_df)
# print(diary_df.sample(1))
#
#
print(diary_df.sample(1))
cc_df
=
click_feature_engineering
(
click_df
,
conversion_df
)
#
cc_df = click_feature_engineering(click_df, conversion_df)
df
=
join_features
(
device_df
,
diary_df
,
cc_df
)
#
df = join_features(device_df, diary_df, cc_df)
train_df
,
test_df
=
train_test_split
(
df
,
test_size
=
0.2
)
#
train_df, test_df = train_test_split(df, test_size=0.2)
train_df
,
val_df
=
train_test_split
(
train_df
,
test_size
=
0.2
)
#
train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = build_features(df)
# all_features = build_features(df)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
...
@@ -68,11 +68,13 @@ def main():
...
@@ -68,11 +68,13 @@ def main():
save_path
=
"/home/gmuser/data/models/1595317247"
save_path
=
"/home/gmuser/data/models/1595317247"
# save_path = str(Path("~/Desktop/models/1595297428").expanduser())
# save_path = str(Path("~/Desktop/models/1595297428").expanduser())
filename
=
save_path
+
"/saved_model.pb"
filename
=
save_path
# tf.saved_model.load
# tf.saved_model.load
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
filename
)
predict_fn
=
tf
.
contrib
.
predictor
.
from_saved_model
(
save_path
)
res
=
pickle
.
dumps
(
predict_fn
)
print
(
res
)
# for i in range(5):
# for i in range(5):
# test_300 = test_df.sample(300)
# test_300 = test_df.sample(300)
...
@@ -84,17 +86,17 @@ def main():
...
@@ -84,17 +86,17 @@ def main():
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# ]
# ]
device_dict
=
get_device_dict_from_redis
()
#
device_dict = get_device_dict_from_redis()
diary_dict
=
get_diary_dict_from_redis
()
#
diary_dict = get_diary_dict_from_redis()
device_ids
=
list
(
device_dict
.
keys
())[:
20
]
#
device_ids = list(device_dict.keys())[:20]
diary_ids
=
list
(
diary_dict
.
keys
())
#
diary_ids = list(diary_dict.keys())
for
i
in
range
(
2
):
#
for i in range(2):
time_1
=
timeit
.
default_timer
()
#
time_1 = timeit.default_timer()
model_predict_diary
(
random
.
sample
(
device_ids
,
1
)[
0
],
random
.
sample
(
diary_ids
,
200
),
device_dict
,
diary_dict
,
predict_fn
)
#
model_predict_diary(random.sample(device_ids, 1)[0], random.sample(diary_ids, 200), device_dict, diary_dict, predict_fn)
total_1
=
(
timeit
.
default_timer
()
-
time_1
)
#
total_1 = (timeit.default_timer() - time_1)
print
(
"total prediction cost {:.5f}s"
.
format
(
total_1
),
"
\n
"
)
#
print("total prediction cost {:.5f}s".format(total_1), "\n")
total_time
=
(
time
.
time
()
-
time_begin
)
/
60
total_time
=
(
time
.
time
()
-
time_begin
)
/
60
print
(
"total cost {:.2f} mins at {}"
.
format
(
total_time
,
datetime
.
now
()))
print
(
"total cost {:.2f} mins at {}"
.
format
(
total_time
,
datetime
.
now
()))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment