Commit a0f81d00 authored by 赵威's avatar 赵威

pickle file

parent 2b8f52b9
...@@ -37,17 +37,17 @@ def time_cost(func): ...@@ -37,17 +37,17 @@ def time_cost(func):
def main(): def main():
time_begin = time.time() time_begin = time.time()
device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data/")) # device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data/"))
# print(diary_df.sample(1)) # # print(diary_df.sample(1))
device_df = device_feature_engineering(device_df) # device_df = device_feature_engineering(device_df)
# print(device_df.sample(1)) # # print(device_df.sample(1))
diary_df = diary_feature_engineering(diary_df) # diary_df = diary_feature_engineering(diary_df)
# print(diary_df.sample(1)) # # print(diary_df.sample(1))
cc_df = click_feature_engineering(click_df, conversion_df) # cc_df = click_feature_engineering(click_df, conversion_df)
df = join_features(device_df, diary_df, cc_df) # df = join_features(device_df, diary_df, cc_df)
train_df, test_df = train_test_split(df, test_size=0.2) # train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2) # train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = build_features(df) # all_features = build_features(df)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1} # params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
...@@ -68,11 +68,13 @@ def main(): ...@@ -68,11 +68,13 @@ def main():
save_path = "/home/gmuser/data/models/1595317247" save_path = "/home/gmuser/data/models/1595317247"
# save_path = str(Path("~/Desktop/models/1595297428").expanduser()) # save_path = str(Path("~/Desktop/models/1595297428").expanduser())
filename = save_path + "/saved_model.pb" filename = save_path
# tf.saved_model.load # tf.saved_model.load
predict_fn = tf.contrib.predictor.from_saved_model(filename) predict_fn = tf.contrib.predictor.from_saved_model(save_path)
res = pickle.dumps(predict_fn)
print(res)
# for i in range(5): # for i in range(5):
# test_300 = test_df.sample(300) # test_300 = test_df.sample(300)
...@@ -84,17 +86,17 @@ def main(): ...@@ -84,17 +86,17 @@ def main():
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988" # "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# ] # ]
device_dict = get_device_dict_from_redis() # device_dict = get_device_dict_from_redis()
diary_dict = get_diary_dict_from_redis() # diary_dict = get_diary_dict_from_redis()
device_ids = list(device_dict.keys())[:20] # device_ids = list(device_dict.keys())[:20]
diary_ids = list(diary_dict.keys()) # diary_ids = list(diary_dict.keys())
for i in range(2): # for i in range(2):
time_1 = timeit.default_timer() # time_1 = timeit.default_timer()
model_predict_diary(random.sample(device_ids, 1)[0], random.sample(diary_ids, 200), device_dict, diary_dict, predict_fn) # model_predict_diary(random.sample(device_ids, 1)[0], random.sample(diary_ids, 200), device_dict, diary_dict, predict_fn)
total_1 = (timeit.default_timer() - time_1) # total_1 = (timeit.default_timer() - time_1)
print("total prediction cost {:.5f}s".format(total_1), "\n") # print("total prediction cost {:.5f}s".format(total_1), "\n")
total_time = (time.time() - time_begin) / 60 total_time = (time.time() - time_begin) / 60
print("total cost {:.2f} mins at {}".format(total_time, datetime.now())) print("total cost {:.2f} mins at {}".format(total_time, datetime.now()))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment