Commit a0f81d00 authored by 赵威's avatar 赵威

pickle file

parent 2b8f52b9
......@@ -37,17 +37,17 @@ def time_cost(func):
def main():
time_begin = time.time()
device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data/"))
# print(diary_df.sample(1))
device_df = device_feature_engineering(device_df)
# print(device_df.sample(1))
diary_df = diary_feature_engineering(diary_df)
# print(diary_df.sample(1))
cc_df = click_feature_engineering(click_df, conversion_df)
df = join_features(device_df, diary_df, cc_df)
train_df, test_df = train_test_split(df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)
# device_df, diary_df, click_df, conversion_df = read_csv_data(Path("~/data/cvr_data/"))
# # print(diary_df.sample(1))
# device_df = device_feature_engineering(device_df)
# # print(device_df.sample(1))
# diary_df = diary_feature_engineering(diary_df)
# # print(diary_df.sample(1))
# cc_df = click_feature_engineering(click_df, conversion_df)
# df = join_features(device_df, diary_df, cc_df)
# train_df, test_df = train_test_split(df, test_size=0.2)
# train_df, val_df = train_test_split(train_df, test_size=0.2)
# all_features = build_features(df)
# params = {"feature_columns": all_features, "hidden_units": [64, 32], "learning_rate": 0.1}
......@@ -68,11 +68,13 @@ def main():
save_path = "/home/gmuser/data/models/1595317247"
# save_path = str(Path("~/Desktop/models/1595297428").expanduser())
filename = save_path + "/saved_model.pb"
filename = save_path
# tf.saved_model.load
predict_fn = tf.contrib.predictor.from_saved_model(filename)
predict_fn = tf.contrib.predictor.from_saved_model(save_path)
res = pickle.dumps(predict_fn)
print(res)
# for i in range(5):
# test_300 = test_df.sample(300)
......@@ -84,17 +86,17 @@ def main():
# "16195283", "16838351", "17161073", "17297878", "17307484", "17396235", "16418737", "16995481", "17312201", "12237988"
# ]
device_dict = get_device_dict_from_redis()
diary_dict = get_diary_dict_from_redis()
# device_dict = get_device_dict_from_redis()
# diary_dict = get_diary_dict_from_redis()
device_ids = list(device_dict.keys())[:20]
diary_ids = list(diary_dict.keys())
# device_ids = list(device_dict.keys())[:20]
# diary_ids = list(diary_dict.keys())
for i in range(2):
time_1 = timeit.default_timer()
model_predict_diary(random.sample(device_ids, 1)[0], random.sample(diary_ids, 200), device_dict, diary_dict, predict_fn)
total_1 = (timeit.default_timer() - time_1)
print("total prediction cost {:.5f}s".format(total_1), "\n")
# for i in range(2):
# time_1 = timeit.default_timer()
# model_predict_diary(random.sample(device_ids, 1)[0], random.sample(diary_ids, 200), device_dict, diary_dict, predict_fn)
# total_1 = (timeit.default_timer() - time_1)
# print("total prediction cost {:.5f}s".format(total_1), "\n")
total_time = (time.time() - time_begin) / 60
print("total cost {:.2f} mins at {}".format(total_time, datetime.now()))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment