Commit ac0c5e92 authored by 赵威's avatar 赵威

test tractate

parent 41eea449
......@@ -10,8 +10,8 @@ from models.esmm.fe import device_fe, diary_fe, tractate_fe
from models.esmm.tractate_model import model_predict_tractate
from utils.cache import redis_client2
from utils.grey import recommed_service_category_device_id_by_tail
from utils.portrait import (user_portrait_tag3_get_candidate_dict, user_portrait_tag3_get_candidate_unread_list,
user_portrait_tag3_write_ctcvr_data)
from utils.portrait import (get_user_portrait_tag3_read_v2, user_portrait_tag3_get_candidate_dict,
user_portrait_tag3_get_candidate_unread_list, user_portrait_tag3_write_ctcvr_data)
def user_portrait_scan_info(device_dict, diary_dict, predict_fn, tail_number):
......@@ -64,6 +64,9 @@ def main():
diary_save_path = "/home/gmuser/data/models/diary/1596083349"
diary_predict_fn = tf.contrib.predictor.from_saved_model(diary_save_path)
tractate_save_path = "/home/gmuser/data/models/tractate/1596092061"
tractate_predict_fn = tf.contrib.predictor.from_saved_model(tractate_save_path)
# device_id = "androidid_a25a1129c0b38f7b"
# offline_predict_diary(device_id, device_dict, diary_dict, diary_predict_fn)
......@@ -71,8 +74,7 @@ def main():
# print(len(res))
# print(res[:10])
tail_number = sys.argv[1]
# "c", "d", "e", "f"
tail_number = sys.argv[1] # "c", "d", "e", "f"
user_portrait_scan_info(device_dict, diary_dict, diary_predict_fn, tail_number)
......
import datetime
import time
import tensorflow as tf
from models.esmm.fe import device_fe, diary_fe, tractate_fe
from models.esmm.tractate_model import model_predict_tractate
from utils.cache import redis_client2
from utils.grey import recommed_service_category_device_id_by_tail
from utils.portrait import (get_user_portrait_tag3_read_v2, user_portrait_tag3_get_candidate_dict,
user_portrait_tag3_get_candidate_unread_list, user_portrait_tag3_write_ctcvr_data)
if __name__ == "__main__":
time_begin = time.time()
device_id = "androidid_a25a1129c0b38f7b"
tractate_save_path = "/home/gmuser/data/models/tractate/1596092061"
tractate_predict_fn = tf.contrib.predictor.from_saved_model(tractate_save_path)
read_list, _ = get_user_portrait_tag3_read_v2(device_id, "tractate")
print(len(read_list))
print(read_list[:10])
res = user_portrait_tag3_get_candidate_unread_list(device_id, "tractate")
print(len(res))
print(res[:10])
res2 = user_portrait_tag3_get_candidate_dict(device_id, "tractate")
print(res2.keys())
total_time = (time.time() - time_begin) / 60
print("total cost {:.2f} mins at {}".format(total_time, datetime.datetime.now()))
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment