Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
strategy_embedding
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
strategy_embedding
Commits
06526cd7
Commit
06526cd7
authored
Nov 16, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
write data
parent
63093189
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
15 deletions
+15
-15
to_vector.py
personas_vector/to_vector.py
+15
-15
No files found.
personas_vector/to_vector.py
View file @
06526cd7
...
...
@@ -58,7 +58,7 @@ if __name__ == "__main__":
tags_vector_dict
[
i
]
=
vec
except
Exception
as
e
:
pass
#
redis_client_db.hmset("personas_tags_embedding", tags_vector_dict)
redis_client_db
.
hmset
(
"personas_tags_embedding"
,
tags_vector_dict
)
print
(
len
(
tags_vector_dict
.
items
()))
# print(random.choice(list(tags_vector_dict.items())))
...
...
@@ -91,21 +91,21 @@ if __name__ == "__main__":
base_dir
=
os
.
getcwd
()
model_dir
=
os
.
path
.
join
(
base_dir
,
"_models"
)
index_path
=
os
.
path
.
join
(
model_dir
,
"faiss_personas_vector.index"
)
#
faiss.write_index(index2, index_path)
faiss
.
write_index
(
index2
,
index_path
)
print
(
index_path
)
device
vector
for
_
,
row
in
device_tags_df
.
iterrows
():
vecs
=
[]
for
i
in
row
[
"business_tags"
]:
# vec = tags_vector_dict.get(i, np.array([]))
vec
=
tags_vector_dict
.
get
(
i
)
if
vec
:
vecs
.
append
(
np
.
array
(
json
.
loads
(
vec
))
.
astype
(
"float32"
))
if
vecs
:
t
=
np
.
array
([
np
.
average
(
vecs
,
axis
=
0
)])
.
astype
(
"float32"
)
D
,
I
=
index2
.
search
(
t
,
10
)
print
(
row
[
"cl_id"
],
row
[
"business_tags"
])
print
(
I
)
#
device vector
#
for _, row in device_tags_df.iterrows():
#
vecs = []
#
for i in row["business_tags"]:
#
# vec = tags_vector_dict.get(i, np.array([]))
#
vec = tags_vector_dict.get(i)
#
if vec:
#
vecs.append(np.array(json.loads(vec)).astype("float32"))
#
if vecs:
#
t = np.array([np.average(vecs, axis=0)]).astype("float32")
#
D, I = index2.search(t, 10)
#
print(row["cl_id"], row["business_tags"])
#
print(I)
# curl "http://172.16.31.17:9000/gm-dbmw-tractate-read/_search?pretty" -d '{"query": {"term": {"id": "10269"}}, "_source": {"include": ["content", "portrait_tag_name"]}}'
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment