Commit 06526cd7 authored by 赵威's avatar 赵威

write data

parent 63093189
......@@ -58,7 +58,7 @@ if __name__ == "__main__":
tags_vector_dict[i] = vec
except Exception as e:
pass
# redis_client_db.hmset("personas_tags_embedding", tags_vector_dict)
redis_client_db.hmset("personas_tags_embedding", tags_vector_dict)
print(len(tags_vector_dict.items()))
# print(random.choice(list(tags_vector_dict.items())))
......@@ -91,21 +91,21 @@ if __name__ == "__main__":
base_dir = os.getcwd()
model_dir = os.path.join(base_dir, "_models")
index_path = os.path.join(model_dir, "faiss_personas_vector.index")
# faiss.write_index(index2, index_path)
faiss.write_index(index2, index_path)
print(index_path)
device vector
for _, row in device_tags_df.iterrows():
vecs = []
for i in row["business_tags"]:
# vec = tags_vector_dict.get(i, np.array([]))
vec = tags_vector_dict.get(i)
if vec:
vecs.append(np.array(json.loads(vec)).astype("float32"))
if vecs:
t = np.array([np.average(vecs, axis=0)]).astype("float32")
D, I = index2.search(t, 10)
print(row["cl_id"], row["business_tags"])
print(I)
# device vector
# for _, row in device_tags_df.iterrows():
# vecs = []
# for i in row["business_tags"]:
# # vec = tags_vector_dict.get(i, np.array([]))
# vec = tags_vector_dict.get(i)
# if vec:
# vecs.append(np.array(json.loads(vec)).astype("float32"))
# if vecs:
# t = np.array([np.average(vecs, axis=0)]).astype("float32")
# D, I = index2.search(t, 10)
# print(row["cl_id"], row["business_tags"])
# print(I)
# curl "http://172.16.31.17:9000/gm-dbmw-tractate-read/_search?pretty" -d '{"query": {"term": {"id": "10269"}}, "_source": {"include": ["content", "portrait_tag_name"]}}'
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment