Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
strategy_embedding
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
strategy_embedding
Commits
2df0646d
Commit
2df0646d
authored
Oct 28, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
load model
parent
94aef5ab
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
4 deletions
+16
-4
word_to_vec.py
word_vector/word_to_vec.py
+16
-4
No files found.
word_vector/word_to_vec.py
View file @
2df0646d
...
...
@@ -15,6 +15,10 @@ model_output_name = "w2v_model"
model_path
=
os
.
path
.
join
(
model_dir
,
model_output_name
)
WORD2VEC_MODEL
=
word2vec
.
Word2Vec
.
load
(
model_path
)
tracate_click_ids_model_name
=
"tractate_click_ids_item2vec_model"
tractate_click_ids_model_path
=
os
.
path
.
join
(
model_dir
,
tracate_click_ids_model_name
)
TRACTATE_CLICK_IDS_MODEL
=
word2vec
.
Word2Vec
.
load
(
tractate_click_ids_model_path
)
class
W2vSentences
:
def
__init__
(
self
,
f_name
):
...
...
@@ -74,7 +78,7 @@ def projects_item2vec(score_limit=5):
return
model
def
clicked_tractate_ids_item2vec
():
def
save_
clicked_tractate_ids_item2vec
():
click_ids
=
[]
with
open
(
os
.
path
.
join
(
data_dir
,
"click_tractate_ids.csv"
),
"r"
)
as
f
:
data
=
f
.
readlines
()
...
...
@@ -86,11 +90,16 @@ def clicked_tractate_ids_item2vec():
model
=
Word2Vec
(
click_ids
,
hs
=
0
,
min_count
=
3
,
workers
=
multiprocessing
.
cpu_count
(),
iter
=
10
)
print
(
model
)
print
(
len
(
click_ids
))
for
id
in
[
"373744"
,
"268517"
,
"512"
]:
print
(
model
.
wv
.
most_similar
(
id
,
topn
=
5
)
)
model
.
save
(
tractate_click_ids_model_path
)
return
model
@bind
(
"strategy_embedding/word_vector/tractate_item2vec"
)
def
clicked_tractate_ids_item2vec_model
(
id
,
n
=
5
):
return
TRACTATE_CLICK_IDS_MODEL
.
wv
.
most_similar
(
id
,
topn
=
n
)
if
__name__
==
"__main__"
:
begin_time
=
time
.
time
()
...
...
@@ -99,6 +108,9 @@ if __name__ == "__main__":
for
i
in
[
"双眼皮"
,
"隆鼻"
]:
print
(
word_similarity
(
i
))
clicked_tractate_ids_item2vec
()
# save_clicked_tractate_ids_item2vec()
for
id
in
[
"84375"
,
"148764"
,
"368399"
]:
print
(
clicked_tractate_ids_item2vec_model
(
id
,
n
=
5
))
print
(
"total cost: {:.2f}mins"
.
format
((
time
.
time
()
-
begin_time
)
/
60
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment