Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
strategy_embedding
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
strategy_embedding
Commits
a8f42b41
Commit
a8f42b41
authored
Nov 26, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
retrain
parent
876f7a6d
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
22 deletions
+17
-22
to_vector.py
personas_vector/to_vector.py
+17
-22
No files found.
personas_vector/to_vector.py
View file @
a8f42b41
...
...
@@ -87,29 +87,24 @@ if __name__ == "__main__":
index
.
add_with_ids
(
tractate_embeddings
,
tractate_ids
)
print
(
"trained: "
+
str
(
index
.
is_trained
))
# index2 = faiss.IndexIDMap(index)
# index2.add_with_ids(tractate_embeddings, tractate_ids)
# print("trained: " + str(index2.is_trained))
# print("total index: " + str(index2.ntotal))
# base_dir = os.getcwd()
# model_dir = os.path.join(base_dir, "_models")
# index_path = os.path.join(model_dir, "faiss_personas_vector.index")
# faiss.write_index(index2, index_path)
# print(index_path)
base_dir
=
os
.
getcwd
()
model_dir
=
os
.
path
.
join
(
base_dir
,
"_models"
)
index_path
=
os
.
path
.
join
(
model_dir
,
"faiss_personas_vector.index"
)
faiss
.
write_index
(
index
,
index_path
)
print
(
index_path
)
# device vector
for
_
,
row
in
device_tags_df
.
iterrows
():
vecs
=
[]
for
i
in
row
[
"business_tags"
]:
# vec = tags_vector_dict.get(i, np.array([]))
vec
=
tags_vector_dict
.
get
(
i
)
if
vec
:
vecs
.
append
(
np
.
array
(
json
.
loads
(
vec
))
.
astype
(
"float32"
))
if
vecs
:
t
=
np
.
array
([
np
.
average
(
vecs
,
axis
=
0
)])
.
astype
(
"float32"
)
D
,
I
=
index
.
search
(
t
,
10
)
print
(
row
[
"cl_id"
],
row
[
"business_tags"
])
print
(
I
)
#
for _, row in device_tags_df.iterrows():
#
vecs = []
#
for i in row["business_tags"]:
#
# vec = tags_vector_dict.get(i, np.array([]))
#
vec = tags_vector_dict.get(i)
#
if vec:
#
vecs.append(np.array(json.loads(vec)).astype("float32"))
#
if vecs:
#
t = np.array([np.average(vecs, axis=0)]).astype("float32")
#
D, I = index.search(t, 10)
#
print(row["cl_id"], row["business_tags"])
#
print(I)
# curl "http://172.16.31.17:9000/gm-dbmw-tractate-read/_search?pretty" -d '{"query": {"term": {"id": "10269"}}, "_source": {"include": ["content", "portrait_tag_name"]}}'
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment