Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
strategy_embedding
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
rank
strategy_embedding
Commits
df292642
Commit
df292642
authored
Nov 16, 2020
by
赵威
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
write data to csv
parent
eb4fcf09
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
145 additions
and
14 deletions
+145
-14
get_data.py
personas_vector/get_data.py
+121
-11
files.py
utils/files.py
+24
-3
No files found.
personas_vector/get_data.py
View file @
df292642
...
@@ -6,31 +6,141 @@ sys.path.append(os.path.realpath("."))
...
@@ -6,31 +6,141 @@ sys.path.append(os.path.realpath("."))
from
utils.date
import
get_ndays_before
,
get_ndays_before_no_minus
from
utils.date
import
get_ndays_before
,
get_ndays_before_no_minus
from
utils.es
import
es_scan
,
get_tractate_info_from_es
from
utils.es
import
es_scan
,
get_tractate_info_from_es
from
utils.files
import
save_df
_to_csv
from
utils.files
import
get_df
,
save_df_to_csv
,
save_dict
_to_csv
from
utils.spark
import
(
get_click_data
,
get_device_tags
,
get_exposure_data
,
get_spark
)
from
utils.spark
import
(
get_click_data
,
get_device_tags
,
get_exposure_data
,
get_spark
)
base_dir
=
os
.
getcwd
()
DATA_PATH
=
os
.
path
.
join
(
base_dir
,
"_data"
)
# def device_tractae_fe():
# click_df = get_df("tractate_click.csv")
# exposure_df = get_df("tractate_exposure.csv")
# device_fe_df = get_df("device_feature.csv")
# tractate_fe_df = get_df("tractate_feature.csv")
# print(click_df.shape)
# print(exposure_df.shape)
# print(device_fe_df.shape)
# print(tractate_fe_df.shape)
# #
# click_df.drop("partition_date", inplace=True, axis=1)
# exposure_df.drop("partition_date", inplace=True, axis=1)
# base_df = pd.merge(click_df, exposure_df, how="outer", indicator="Exist")
# base_df["label"] = np.where(base_df["Exist"] == "right_only", 0.75, 1.0)
# base_df.drop("Exist", inplace=True, axis=1)
# #
# device_fe_df.fillna("", inplace=True)
# device_fe_df.rename(columns={"cl_id": "device_id"}, inplace=True)
# device_fe_df["first_demands"] = device_fe_df["first_demands"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["second_demands"] = device_fe_df["second_demands"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["first_solutions"] = device_fe_df["first_solutions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["second_solutions"] = device_fe_df["second_solutions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["first_positions"] = device_fe_df["first_positions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["second_positions"] = device_fe_df["second_positions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["projects"] = device_fe_df["projects"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# device_fe_df["device_fd"] = device_fe_df["first_demands"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_sd"] = device_fe_df["second_demands"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_fs"] = device_fe_df["first_solutions"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_ss"] = device_fe_df["second_solutions"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_fp"] = device_fe_df["first_positions"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_sp"] = device_fe_df["second_positions"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_p"] = device_fe_df["projects"].apply(lambda x: nth_element(x, 0))
# device_fe_df["device_fd2"] = device_fe_df["first_demands"].apply(lambda x: nth_element(x, 1))
# device_fe_df["device_sd2"] = device_fe_df["second_demands"].apply(lambda x: nth_element(x, 1))
# device_fe_df["device_fs2"] = device_fe_df["first_solutions"].apply(lambda x: nth_element(x, 1))
# device_fe_df["device_ss2"] = device_fe_df["second_solutions"].apply(lambda x: nth_element(x, 1))
# device_fe_df["device_fp2"] = device_fe_df["first_positions"].apply(lambda x: nth_element(x, 1))
# device_fe_df["device_sp2"] = device_fe_df["second_positions"].apply(lambda x: nth_element(x, 1))
# device_fe_df["device_p2"] = device_fe_df["projects"].apply(lambda x: nth_element(x, 1))
# _drop_columns = [
# "first_demands", "second_demands", "first_solutions", "second_solutions", "first_positions", "second_positions",
# "projects"
# ]
# device_fe_df.drop(columns=_drop_columns, axis=1, inplace=True)
# #
# _card_drop_columns = [
# "card_first_demands", "card_second_demands", "card_first_solutions", "card_second_solutions", "card_first_positions",
# "card_second_positions", "card_projects"
# ]
# tractate_fe_df[_card_drop_columns].fillna("", inplace=True)
# tractate_fe_df["card_first_demands"] = tractate_fe_df["card_first_demands"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_second_demands"] = tractate_fe_df["card_second_demands"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_first_solutions"] = tractate_fe_df["card_first_solutions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_second_solutions"] = tractate_fe_df["card_second_solutions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_first_positions"] = tractate_fe_df["card_first_positions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_second_positions"] = tractate_fe_df["card_second_positions"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_projects"] = tractate_fe_df["card_projects"].str.split(",").\
# apply(lambda d: d if isinstance(d, list) else [])
# tractate_fe_df["card_fd"] = tractate_fe_df["card_first_demands"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_sd"] = tractate_fe_df["card_second_demands"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_fs"] = tractate_fe_df["card_first_solutions"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_ss"] = tractate_fe_df["card_second_solutions"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_fp"] = tractate_fe_df["card_first_positions"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_sp"] = tractate_fe_df["card_second_positions"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_p"] = tractate_fe_df["card_projects"].apply(lambda x: nth_element(x, 0))
# tractate_fe_df["card_fd2"] = tractate_fe_df["card_first_demands"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df["card_sd2"] = tractate_fe_df["card_second_demands"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df["card_fs2"] = tractate_fe_df["card_first_solutions"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df["card_ss2"] = tractate_fe_df["card_second_solutions"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df["card_fp2"] = tractate_fe_df["card_first_positions"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df["card_sp2"] = tractate_fe_df["card_second_positions"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df["card_p2"] = tractate_fe_df["card_projects"].apply(lambda x: nth_element(x, 1))
# tractate_fe_df.drop(columns=_card_drop_columns, axis=1, inplace=True)
# #
# df = pd.merge(pd.merge(base_df, device_fe_df), tractate_fe_df)
# nullseries = df.isnull().sum()
# nulls = nullseries[nullseries > 0]
# if nulls.any():
# print(nulls)
# raise Exception("dataframe nulls")
# return df
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
spark
=
get_spark
(
"personas_vector_data"
)
spark
=
get_spark
(
"personas_vector_data"
)
card_type
=
"user_post"
card_type
=
"user_post"
days
=
5
# TODO days 30
days
=
5
# TODO days 30
start
,
end
=
get_ndays_before_no_minus
(
days
),
get_ndays_before_no_minus
(
1
)
start
,
end
=
get_ndays_before_no_minus
(
days
),
get_ndays_before_no_minus
(
1
)
#
click_df = get_click_data(spark, card_type, start, end)
click_df
=
get_click_data
(
spark
,
card_type
,
start
,
end
)
# #
save_df_to_csv(click_df, "personas_tractate_click.csv")
save_df_to_csv
(
click_df
,
"personas_tractate_click.csv"
)
#
print(click_df.shape)
print
(
click_df
.
shape
)
#
exposure_df = get_exposure_data(spark, card_type, start, end)
exposure_df
=
get_exposure_data
(
spark
,
card_type
,
start
,
end
)
# #
save_df_to_csv(exposure_df, "personas_tractate_exposure.csv")
save_df_to_csv
(
exposure_df
,
"personas_tractate_exposure.csv"
)
#
print(exposure_df.shape)
print
(
exposure_df
.
shape
)
#
device_feature_df = get_device_tags(spark)
device_feature_df
=
get_device_tags
(
spark
)
# #
save_df_to_csv(device_feature_df, "personas_device_feature.csv")
save_df_to_csv
(
device_feature_df
,
"personas_device_feature.csv"
)
#
print(device_feature_df.shape)
print
(
device_feature_df
.
shape
)
tractate_dict
=
{}
tractate_dict
=
{}
for
item
in
get_tractate_info_from_es
([
"id"
,
"portrait_tag_name"
]):
for
item
in
get_tractate_info_from_es
([
"id"
,
"portrait_tag_name"
]):
id
=
item
[
"_id"
]
id
=
item
[
"_id"
]
tractate_dict
[
id
]
=
item
[
"_source"
][
"portrait_tag_name"
]
tractate_dict
[
id
]
=
","
.
join
(
item
[
"_source"
][
"portrait_tag_name"
])
save_df_to_csv
(
tractate_dict
,
"personas_tractate_tags.csv"
)
print
(
len
(
tractate_dict
))
print
(
len
(
tractate_dict
))
print
(
random
.
choice
(
list
(
tractate_dict
.
items
())))
print
(
random
.
choice
(
list
(
tractate_dict
.
items
())))
...
...
utils/files.py
View file @
df292642
import
os
import
os
import
pandas
as
pd
base_dir
=
os
.
getcwd
()
DATA_PATH
=
os
.
path
.
join
(
base_dir
,
"_data"
)
def
remove_file
(
path
):
def
remove_file
(
path
):
try
:
try
:
...
@@ -10,8 +15,24 @@ def remove_file(path):
...
@@ -10,8 +15,24 @@ def remove_file(path):
def
save_df_to_csv
(
df
,
file
):
def
save_df_to_csv
(
df
,
file
):
print
(
df
.
head
(
3
))
print
(
df
.
head
(
3
))
base_dir
=
os
.
getcwd
()
full_path
=
os
.
path
.
join
(
DATA_PATH
,
file
)
data_dir
=
os
.
path
.
join
(
base_dir
,
"_data"
)
print
(
full_path
)
full_path
=
os
.
path
.
join
(
data_dir
,
file
)
remove_file
(
full_path
)
remove_file
(
full_path
)
df
.
to_csv
(
full_path
,
sep
=
"|"
,
index
=
False
)
df
.
to_csv
(
full_path
,
sep
=
"|"
,
index
=
False
)
def
save_dict_to_csv
(
d
,
file
):
print
(
len
(
d
))
full_path
=
os
.
path
.
join
(
DATA_PATH
,
file
)
print
(
full_path
)
remove_file
(
full_path
)
with
open
(
full_path
,
"w"
)
as
f
:
for
(
k
,
v
)
in
d
.
items
:
if
v
:
f
.
write
(
"{}|{}
\n
"
.
format
(
k
,
","
.
join
([
str
(
x
)
for
x
in
v
])))
def
get_df
(
file
):
full_path
=
os
.
path
.
join
(
DATA_PATH
,
file
)
df
=
pd
.
read_csv
(
full_path
,
sep
=
"|"
)
return
df
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment