high_quality_diary_analysis.py 13.7 KB
# -*- coding:UTF-8 -*-
# @Time  : 2020/9/23 14:26
# @File  : high_quality_diary_analysis.py
# @email : litao@igengmei.com
# @author : litao


"""
限定尾号的7000篇内容 曝光了哪些
用设备找到用户画像  二级诉求和项目分开做
用画像的标签 在7000篇内容中相关 候选池阅读完
标签在第一列
设备数
曝光数
曝光数
精准曝光占比
内容池数量


每个画像多少帖子
一共曝光了多少个帖子
"""
import hashlib
import json

import pymysql
import xlwt, datetime
import redis
# from pyhive import hive
from maintenance.func_send_email_with_file import send_file_email
from typing import Dict, List
from elasticsearch_7 import Elasticsearch
from elasticsearch_7.helpers import scan
import sys
import time
from pyspark import SparkConf
from pyspark.sql import SparkSession, DataFrame

# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti
from utils.func_from_es_get_article import get_user_post_from_mysql, get_diary_from_mysql
from meta_base_code.utils.func_from_redis_get_portrait import user_portrait_scan_info, get_user_portrait_tag3_from_redis
from meta_base_code.utils.func_from_es_get_article import get_es_article_num, get_user_post_from_mysql


def con_sql(sql):
    # 从数据库的表里获取数据

    db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
                         db='jerry_prod')
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    db.close()
    return result


startTime = time.time()
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
sparkConf.set("prod.gold.jdbcuri",
              "jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true")
sparkConf.set("prod.mimas.jdbcuri",
              "jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true")
sparkConf.set("prod.gaia.jdbcuri",
              "jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true")
sparkConf.set("prod.tidb.jdbcuri",
              "jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.jerry.jdbcuri",
              "jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000")
sparkConf.set("prod.tidb.database", "jerry_prod")
sparkConf.setAppName("high_quality_diary_analysis")

spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions")
         .config("spark.tispark.pd.addresses", "172.16.40.170:2379").enableHiveSupport().getOrCreate())

spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar")
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar")
spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'")
spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'")
spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'")

sql = """
select card_id from strategy_content_exposure_index where card_content_type="diary" and preciseexposure_num>=50 and ctr>=0.05 and avg_page_stay>=20 and create_day="2020-09-17"
"""
second_demands_count_dict, tags_v3_count_dict, second_demands_card_id_list, tags_v3_card_id_list, second_demands_tractate_dict, tags_v3_tractate_dict = get_diary_from_mysql(
    sql,id_type='diary')
print(second_demands_count_dict, tags_v3_count_dict, second_demands_card_id_list, tags_v3_card_id_list)

time.sleep(20)
t = 1
day_num = 0 - t
now = (datetime.datetime.now() + datetime.timedelta(days=day_num))
last_30_day_str = (now + datetime.timedelta(days=-31)).strftime("%Y%m%d")
today_str = now.strftime("%Y%m%d")
today_str_format = now.strftime("%Y-%m-%d")
yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d")
yesterday_str_format = (now + datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d")
device_id_dict = {}

huidu_device_id_sql = r"""
select t2.device_id from 
(select distinct(first_device) as device_id from online.ml_user_history_detail where partition_date = {today_str} and  substr(md5(first_device),-1) in ('8', '9', 'a', 'b') and last_active_date >= {last_30_day_str}) t2
 LEFT JOIN
   (
    select distinct device_id
    from ML.ML_D_CT_DV_DEVICECLEAN_DIMEN_D
    where PARTITION_DAY = '{today_str}'
    AND is_abnormal_device = 'true'
)dev
    on t2.device_id=dev.device_id
WHERE dev.device_id IS NULL

""".format(today_str=today_str, last_30_day_str=last_30_day_str)

print(huidu_device_id_sql)
huidu_device_id_df = spark.sql(huidu_device_id_sql)
huidu_device_id_df.createOrReplaceTempView("dev_view")
huidu_device_id_df.show(1)
sql_res = huidu_device_id_df.collect()
# 设备id
for device_id in sql_res:
    device_id_dict[device_id.device_id] = 1

# 设备对应画像数量
second_demands_tag_count = {}
projects_demands_tag_count = {}
# 设备id对应的画像
second_demands_tag_dict = {}
projects_demands_tag_dict = {}
total_tag_count = {}
total_tag_count_pro = {}
temp_null_count = 0

for redis_count, device_id in enumerate(device_id_dict):

    # if redis_count >= 50:break
    second_demands = []
    projects = []
    total_answer_content_num = 0
    total_tractate_content_num = 0
    total_diary_content_num = 0
    # print(sql_res)
    try:
        res = get_user_portrait_tag3_from_redis(device_id)
    except:
        continue
    if res.get("second_demands"):
        second_demands = res.get("second_demands")
        # print(second_demands)
        for tag in second_demands:
            if tag in second_demands_tag_count:
                second_demands_tag_count[tag] += 1
            else:
                second_demands_tag_count[tag] = 1
            if tag in second_demands_count_dict:
                total_tractate_content_num += second_demands_count_dict[tag]
        second_demands_tag_dict[device_id] = second_demands
    if res.get("projects"):
        projects = res.get("projects")
        # print(projects)
        for tag in projects:
            if tag in projects_demands_tag_count:
                projects_demands_tag_count[tag] += 1
            else:
                projects_demands_tag_count[tag] = 1

            if tag in tags_v3_count_dict:
                total_tractate_content_num += tags_v3_count_dict[tag]
        projects_demands_tag_dict[device_id] = projects
    # print(total_answer_content_num, total_tractate_content_num, total_diary_content_num)
    tmp_count_num = 0

# 7000片内容的曝光

exposure_sql = """
    select C.DEVICE_ID as devcie_id,C.CARD_ID as card_id from

(SELECT T.DEVICE_ID as DEVICE_ID, --设备ID
        T.CARD_ID as CARD_ID --卡片ID
        --COUNT(T.CARD_ID) AS EXPOSURE --点击次数
  FROM ML.MID_ML_C_ET_PE_PRECISEEXPOSURE_DIMEN_D T
  WHERE T.PARTITION_DAY >= '20200918'
    AND T.PAGE_CODE = 'search_result_diary'
  GROUP BY T.DEVICE_ID,
          T.CARD_ID) C
        LEFT JOIN
(
    SELECT DISTINCT device_id
    FROM ml.ml_d_ct_dv_devicespam_d  --去除机构刷单设备,即作弊设备(浏览和曝光事件去除)
    WHERE partition_day='{partition_day}'

    UNION ALL 
    SELECT DISTINCT device_id
    FROM dim.dim_device_user_staff   --去除内网用户
)spam_pv
on spam_pv.device_id=C.DEVICE_ID
LEFT JOIN
(
	SELECT partition_date,device_id
	FROM 
	(--找出user_id当天活跃的第一个设备id
	    SELECT user_id,partition_date,
	            if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
	      FROM online.ml_user_updates
	      WHERE partition_date>='{partition_day}' AND partition_date<'{end_date}'
	)t1
	JOIN
	(  --医生账号
	    SELECT distinct user_id
	    FROM online.tl_hdfs_doctor_view
	    WHERE partition_date = '{partition_day}'

	    --马甲账号/模特用户
	    UNION ALL
	    SELECT user_id
	    FROM ml.ml_c_ct_ui_user_dimen_d
	    WHERE partition_day = '{partition_day}'
	    AND (is_puppet = 'true' or is_classifyuser = 'true')

	    UNION ALL
	    --公司内网覆盖用户
	    select distinct user_id
	    from dim.dim_device_user_staff

	    UNION ALL
	    --登陆过医生设备
	    SELECT distinct t1.user_id
	    FROM
	    (
	        SELECT user_id, v.device_id as device_id
	        FROM online.ml_user_history_detail
	            LATERAL VIEW EXPLODE(device_history_list) v AS device_id
	        WHERE partition_date = '{partition_day}'
	    )t1
	    JOIN
	    (
	        SELECT device_id
	        FROM online.ml_device_history_detail
	        WHERE partition_date = '{partition_day}'
	        AND is_login_doctor = '1'
	    )t2
	        ON t1.device_id = t2.device_id
	)t2
	on t1.user_id=t2.user_id
	group by partition_date,device_id
)dev 
on C.DEVICE_ID=dev.device_id
WHERE (spam_pv.device_id IS NULL or spam_pv.device_id = '')
and (dev.device_id is null or dev.device_id='')
    """.format(partition_day=yesterday_str, end_date=today_str)

print(exposure_sql)
exposure_df = spark.sql(exposure_sql)
# exposure_df.createOrReplaceTempView("exposure_df")
exposure_df.show(1)
sql_res = exposure_df.collect()
session_pv_all = 0
card_id_set = set()

second_demands_id_count = {}
projects_demands_id_count = {}

baoguang_dict = {}
# 遍历card_id 找出对应的device_id是否在灰度里
# 找出card_id 对应帖子的标签 并分类汇总 得到 标签-计数字段
for res in sql_res:
    # partition_date = res.partition_date
    # print(res)
    cl_id = res.devcie_id
    card_id = res.card_id

    if cl_id in device_id_dict:
        # print("has device")
        # print(type(card_id),card_id)
        # print("has card_id")
        # session_pv = res.session_pv
        # card_id_set.update(card_id)
        if cl_id in second_demands_tag_dict:
            if int(card_id) in second_demands_tractate_dict:
                # print(cl_id, second_demands_tag_dict[card_id])
                for tag_id in second_demands_tractate_dict[int(card_id)]:

                    if tag_id in second_demands_id_count:
                        second_demands_id_count[tag_id][int(card_id)] = 1
                    else:
                        second_demands_id_count[tag_id] = {}
                        second_demands_id_count[tag_id][int(card_id)] = 1

                # if tag_id in baoguang_dict:
                #     baoguang_dict[tag_id] += session_pv
                # else:
                #     baoguang_dict[tag_id] = session_pv

        if cl_id in projects_demands_tag_dict:
            if int(card_id) in tags_v3_tractate_dict:
                # print(cl_id,projects_demands_tag_dict[cl_id])
                for tag_id in tags_v3_tractate_dict[int(card_id)]:
                    if tag_id in projects_demands_id_count:
                        projects_demands_id_count[tag_id][int(card_id)] = 1
                    else:
                        projects_demands_id_count[tag_id] = {}
                        projects_demands_id_count[tag_id][int(card_id)] = 1

final_projects_list = []
second_demands_list = []
print(projects_demands_id_count)
time.sleep(10)
print(second_demands_id_count)
time.sleep(10)

for tag_id in second_demands_tag_count:
    temp_dict = {
        "tag_name": tag_id,
        "device_count": second_demands_tag_count[tag_id],
        "tractate_count": second_demands_count_dict.get(tag_id),
        "exporsure_count": len(second_demands_id_count[tag_id]) if second_demands_id_count.get(tag_id) else 0,

    }
    print(temp_dict['tag_name'], temp_dict['device_count'], temp_dict['tractate_count'], temp_dict['exporsure_count'])
    # print(temp_dict)
    # if temp_dict['tractate_count'] <  temp_dict['exporsure_count']:
    #     print("error" , second_demands_id_count[tag_id])
# print(1)
# for tag_id in second_demands_count_dict:
#     if tag_id not in second_demands_tag_count:
#         temp_dict = {
#             "tag_name": tag_id,
#             "device_count": second_demands_tag_count.get(tag_id),
#             "tractate_count": second_demands_count_dict.get(tag_id),
#             "exporsure_count": 0,
#
#         }
#         print(temp_dict)

print("----------------------------------------------")
for tag_id in projects_demands_tag_count:
    temp_dict = {
        "tag_name": tag_id,
        "device_count": projects_demands_tag_count[tag_id],
        "tractate_count": tags_v3_count_dict.get(tag_id),
        "exporsure_count": len(projects_demands_id_count[tag_id]) if projects_demands_id_count.get(tag_id) else 0,

    }
    # if temp_dict['tractate_count'] <  temp_dict['exporsure_count']:
    #     print("error" , projects_demands_id_count[tag_id])

    print(temp_dict['tag_name'], temp_dict['device_count'], temp_dict['tractate_count'], temp_dict['exporsure_count'])
# print(2)
# for tag_id in tags_v3_count_dict:
#     if tag_id not in projects_demands_tag_count:
#         temp_dict = {
#             "tag_name": tag_id,
#             "device_count": projects_demands_tag_count.get(tag_id),
#             "tractate_count": tags_v3_count_dict.get(tag_id),
#             "exporsure_count": 0,
#
#         }
#         print(temp_dict['tag_name'],temp_dict['device_count'],temp_dict['tractate_count'],temp_dict['exporsure_count'])