1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# -*- coding:UTF-8 -*-
# @Time : 2020/9/11 17:37
# @File : ecommerce_income_report.py
# @email : litao@igengmei.com
# @author : litao
# -*- coding:UTF-8 -*-
# @Time : 2020/9/4 17:07
# @File : search_meigou_ctr.py
# @email : litao@igengmei.com
# @author : litao
import hashlib
import json
import pymysql
import xlwt, datetime
import redis
# from pyhive import hive
from maintenance.func_send_email_with_file import send_file_email
from typing import Dict, List
from elasticsearch_7 import Elasticsearch
from elasticsearch_7.helpers import scan
import sys
import time
from pyspark import SparkConf
from pyspark.sql import SparkSession, DataFrame
# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti
def con_sql(sql):
# 从数据库的表里获取数据
db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
db='jerry_prod')
cursor = db.cursor()
cursor.execute(sql)
result = cursor.fetchall()
db.close()
return result
startTime = time.time()
sparkConf = SparkConf()
sparkConf.set("spark.sql.crossJoin.enabled", True)
sparkConf.set("spark.debug.maxToStringFields", "100")
sparkConf.set("spark.tispark.plan.allow_index_double_read", False)
sparkConf.set("spark.tispark.plan.allow_index_read", True)
sparkConf.set("spark.hive.mapred.supports.subdirectories", True)
sparkConf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", True)
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("mapreduce.output.fileoutputformat.compress", False)
sparkConf.set("mapreduce.map.output.compress", False)
sparkConf.set("prod.gold.jdbcuri",
"jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true")
sparkConf.set("prod.mimas.jdbcuri",
"jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true")
sparkConf.set("prod.gaia.jdbcuri",
"jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true")
sparkConf.set("prod.tidb.jdbcuri",
"jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.jerry.jdbcuri",
"jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.158:2379")
sparkConf.set("prod.tispark.pd.addresses", "172.16.40.170:4000")
sparkConf.set("prod.tidb.database", "jerry_prod")
sparkConf.setAppName("search_diary_ctr")
spark = (SparkSession.builder.config(conf=sparkConf).config("spark.sql.extensions", "org.apache.spark.sql.TiExtensions")
.config("spark.tispark.pd.addresses", "172.16.40.170:2379").appName(
"search_diary_ctr").enableHiveSupport().getOrCreate())
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar")
spark.sql("ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar")
spark.sql("CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'")
spark.sql("CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'")
spark.sql("CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'")
task_list = []
task_days = 60
for t in range(1, task_days):
day_num = 0 - t
now = (datetime.datetime.now() + datetime.timedelta(days=day_num))
last_30_day_str = (now + datetime.timedelta(days=-30)).strftime("%Y%m%d")
today_str = now.strftime("%Y%m%d")
yesterday_str = (now + datetime.timedelta(days=-1)).strftime("%Y%m%d")
one_week_age_str = (now + datetime.timedelta(days=-7)).strftime("%Y%m%d")
# quanzhong_dau
quanzhong_dau_sql = """
--quanzhong_dau
SELECT mas.partition_date
,round(count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'android' AND channel_type = 'AI' THEN device_id END)*0.14
+count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'android' AND channel_type = '医美' THEN device_id END)*0.64
+count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'android' AND channel_type = 'AI' THEN device_id END)*0.08
+count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'android' AND channel_type = '医美' THEN device_id END)*0.19
+count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'ios' AND channel_type = 'AI' THEN device_id END)*0.32
+count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'ios' AND channel_type = '积分墙' THEN device_id END)*0.28
+count(DISTINCT CASE WHEN device_type = '老活' AND device_os_type = 'ios' AND channel_type = '医美' THEN device_id END)*1.00
+count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'ios' AND channel_type = 'AI' THEN device_id END)*0.19
+count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'ios' AND channel_type = '积分墙' THEN device_id END)*0.03
+count(DISTINCT CASE WHEN device_type = '新增' AND device_os_type = 'ios' AND channel_type = '医美' THEN device_id END)*0.57,0) as quanzhong_dau
FROM
(
SELECT
partition_date,m.device_id,device_os_type
,case WHEN active_type = '4' THEN '老活'
WHEN active_type in ('1','2') then '新增' END as device_type
,CASE WHEN is_ai_channel = 'true' THEN 'AI'
WHEN first_channel_source_type in ('yqxiu1','yqxiu2','yqxiu3','yqxiu4','yqxiu5','mxyc1','mxyc2','mxyc3'
,'wanpu','jinshan','jx','maimai','zhuoyi','huatian','suopingjingling','mocha','mizhe','meika','lamabang'
,'js-az1','js-az2','js-az3','js-az4','js-az5','jfq-az1','jfq-az2','jfq-az3','jfq-az4','jfq-az5','toufang1'
,'toufang2','toufang3','toufang4','toufang5','toufang6','TF-toufang1','TF-toufang2','TF-toufang3','TF-toufang4'
,'TF-toufang5','tf-toufang1','tf-toufang2','tf-toufang3','tf-toufang4','tf-toufang5','benzhan','promotion_aso100'
,'promotion_qianka','promotion_xiaoyu','promotion_dianru','promotion_malioaso','promotion_malioaso-shequ'
,'promotion_shike','promotion_julang_jl03','promotion_zuimei','','unknown') then '积分墙' ELSE '医美' END as channel_type
FROM online.ml_device_day_active_status m
LEFT JOIN
(SELECT code,is_ai_channel,partition_day
FROM DIM.DIM_AI_CHANNEL_ZP_NEW
WHERE partition_day>= '{start_date}' AND partition_day < '{end_date}' ) tmp
ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
where partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND active_type in ('1','2','4')
) mas
GROUP BY mas.partition_date
""".format(start_date=yesterday_str, end_date=today_str)
print(quanzhong_dau_sql)
quanzhong_dau_df = spark.sql(quanzhong_dau_sql)
quanzhong_dau_df.createOrReplaceTempView("quanzhong_dau_view")
quanzhong_dau_df.show(1)
sql_res = quanzhong_dau_df.collect()
for res in sql_res:
quanzhong_dau = res.quanzhong_dau
partition_date = res.partition_date
# DAU
DAU_sql = """
SELECT mas.partition_date,count(DISTINCT mas.device_id) as dau
FROM
(
SELECT
partition_date,m.device_id
,array(device_os_type ,'合计') as device_os_type
,array(case WHEN active_type = '4' THEN '老活'
WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type
,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel
FROM online.ml_device_day_active_status m
LEFT JOIN
(SELECT code,is_ai_channel,partition_day
FROM DIM.DIM_AI_CHANNEL_ZP_NEW
WHERE partition_day>= '{start_date}' AND partition_day < '{end_date}' ) tmp
ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
where partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND active_type in ('1','2','4')
) mas
LATERAL VIEW explode(mas.channel) t2 AS channel
LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type
LATERAL VIEW explode(mas.active_type) t2 AS active_type
GROUP BY mas.partition_date
""".format(start_date=yesterday_str, end_date=today_str)
print(DAU_sql)
dau_df = spark.sql(DAU_sql)
dau_df.createOrReplaceTempView("dau_view")
dau_df.show(1)
sql_res = dau_df.collect()
for res in sql_res:
dau = res.dau
# CPT日均点击
cpc_daily_click_sql = r"""
SELECT partition_date,count(1) as pv
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
and partition_date < '{end_date}'
AND ((ACTION = 'search_result_welfare_click_item' AND PAGE_NAME = 'search_result_welfare' AND PARAMS['transaction_type'] = 'advertise')
OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'category' AND PARAMS['transaction_type'] = 'operating' AND PARAMS['tab_name'] = 'service')
OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'welfare_home_list_item' and PARAMS['transaction_type'] = 'advertise')
OR (ACTION = 'goto_welfare_detail' AND PARAMS['from'] = 'welfare_list' AND PARAMS['transaction_type'] = 'advertise')
OR (ACTION = 'on_click_card' AND PARAMS['card_content_type'] = 'service' AND PARAMS['page_name'] IN ('new_sign','search_result_welfare','category','welfare_home_list_item','welfare_list') AND PARAMS['transaction_type'] = 'advertise'))
group BY partition_date
""".format(partition_day=yesterday_str, end_date=today_str, start_date=yesterday_str)
print(cpc_daily_click_sql)
cpc_daily_click_df = spark.sql(cpc_daily_click_sql)
cpc_daily_click_df.createOrReplaceTempView("cpc_daily_click")
cpc_daily_click_df.show(1)
sql_res = cpc_daily_click_df.collect()
for res in sql_res:
pv = res.pv
# 商详页PV
pv_sql = """
SELECT
a1.partition_date,count(1) welfare_pv
FROM
(
SELECT cl_id,partition_date
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >='{start_date}'and partition_date < '{end_date}'
AND action='page_view'
AND params['page_name'] = 'welfare_detail'
)a1
JOIN
(
SELECT device_id,partition_date
from online.ml_device_day_active_status
WHERE partition_date >='{start_date}'and partition_date < '{end_date}'
AND active_type in ('1','2','4')
)a2
on a2.device_id = a1.cl_id
AND a2.partition_date=a1.partition_date
group by a1.partition_date
""".format(start_date=yesterday_str,end_date=today_str)
all_pv_df = spark.sql(pv_sql)
all_pv_df.show(1)
sql_res = all_pv_df.collect()
for res in sql_res:
welfare_pv = res.welfare_pv
# 搜索商详页PV
bus_detail_sql = r"""
--页面浏览pvuv
SELECT
page.partition_date as partition_date
,count(case when page_name in ('search_home','search_home_more','search_home_welfare','search_home_diary','search_home_wiki','search_home_post','search_home_hospital','search_home_doctor') then page.cl_id else NULL end) as search_home_pv
,count(distinct case when page_name in ('search_home','search_home_more','search_home_welfare','search_home_diary','search_home_wiki','search_home_post','search_home_hospital','search_home_doctor') then page.cl_id else NULL end) as search_home_uv
,count(CASE when referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more'
,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare'
,'search_result_wiki','search_result_question_answer') and page_name in ('welfare_detail','organization_detail','expert_detail') THEN page.cl_id else NULL END) as referrer_search_hexin_pv
,count(CASE when referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more'
,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare'
,'search_result_wiki','search_result_question_answer') and page_name in ('welfare_detail') THEN page.cl_id else NULL END) as referrer_search_welfare_pv
,count(CASE when referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more'
,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare'
,'search_result_wiki','search_result_question_answer') and page_name in ('diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail'
,'question_answer_detail','article_detail') THEN page.cl_id else NULL END) as referrer_search_neirong_pv
,count(DISTINCT CASE WHEN referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more'
,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare'
,'search_result_wiki','search_result_question_answer') and page_name in ('diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail'
,'question_answer_detail','article_detail') and page_stay >= '0' and page_stay < '1000' THEN page.cl_id else NULL END) as referrer_search_neirong_uv_1000
,sum(CASE WHEN referrer in ('search_result_diary','search_result_doctor','search_result_hospital','search_result_more'
,'search_result_more_infomation','search_result_more_user','search_result_post','search_result_welfare'
,'search_result_wiki','search_result_question_answer') and page_name in ('diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail'
,'question_answer_detail','article_detail') and page_stay >= '0' and page_stay < '1000' THEN page.page_stay else NULL END) as referrer_search_neirong_pagestay
FROM
(
SELECT cl_id,partition_date,page_name,params['referrer'] as referrer,page_stay
FROM online.bl_hdfs_maidian_updates
WHERE partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND action='page_view'
AND page_name in ('search_home','search_home_more','search_home_welfare','search_home_diary','search_home_wiki','search_home_post','search_home_hospital','search_home_doctor'
,'diary_detail','topic_detail','post_detail','user_post_detail','doctor_post_detail','question_detail','answer_detail'
,'question_answer_detail','article_detail','welfare_detail','organization_detail','expert_detail','level_one_plan_detail')
)page
JOIN
(
SELECT partition_date,device_id,t2.active_type,t2.channel,t2.device_os_type
FROM
(
SELECT
partition_date,m.device_id
,array(device_os_type ,'合计') as device_os_type
,array(case WHEN active_type = '4' THEN '老活'
WHEN active_type in ('1','2') then '新增' END ,'合计') as active_type
,array(CASE WHEN is_ai_channel = 'true' THEN 'AI' ELSE '其他' END , '合计') as channel
FROM online.ml_device_day_active_status m
LEFT JOIN
(SELECT code,is_ai_channel,partition_day
FROM DIM.DIM_AI_CHANNEL_ZP_NEW
WHERE partition_day>= '{start_date}' AND partition_day < '{end_date}' ) tmp
ON m.partition_date=tmp.partition_day AND first_channel_source_type=code
where partition_date >= '{start_date}'
AND partition_date < '{end_date}'
AND active_type in ('1','2','4')
) mas
LATERAL VIEW explode(mas.channel) t2 AS channel
LATERAL VIEW explode(mas.device_os_type) t2 AS device_os_type
LATERAL VIEW explode(mas.active_type) t2 AS active_type
)dev_channel
on dev_channel.device_id = page.cl_id
AND dev_channel.partition_date = page.partition_date
GROUP BY page.partition_date
""".format(partition_day=yesterday_str, end_date=today_str, start_date=yesterday_str)
print(bus_detail_sql)
bus_detail_df = spark.sql(bus_detail_sql)
bus_detail_df.createOrReplaceTempView("bus_detail")
bus_detail_df.show(1)
sql_res = bus_detail_df.collect()
for res in sql_res:
search_home_pv = res.search_home_pv
search_home_uv = res.search_home_uv
referrer_search_hexin_pv = res.referrer_search_hexin_pv
referrer_search_welfare_pv = res.referrer_search_welfare_pv
referrer_search_neirong_pv = res.referrer_search_neirong_pv
referrer_search_neirong_uv_1000 = res.referrer_search_neirong_uv_1000
referrer_search_neirong_pagestay = res.referrer_search_neirong_pagestay
# print(res)
# --cpc当日预算(有效口径)
cpc_budget_sql = r"""
SELECT day_id,sum(budget) as budget
FROM
(
SELECT T1.day_id,T1.merchant_doctor_id,case when merchant_budget>=tot_service_budget then tot_service_budget else merchant_budget end as budget
FROM
(
SELECT
substr(clicklog.create_time,1,10) AS day_id
,clicklog.merchant_doctor_id
,max(merchant_budget) as merchant_budget --商户预算
FROM
(
SELECT id,promote_id,price,service_budget,merchant_budget,merchant_doctor_id,create_time,recharge
FROM online.tl_hdfs_cpc_clicklog_view
WHERE partition_date='{partition_date}'
AND regexp_replace(substr(create_time,1,10),'-','')>= '{start_date}'
AND regexp_replace(substr(create_time,1,10),'-','')<'{end_date}'
)clicklog
group by substr(clicklog.create_time,1,10),clicklog.merchant_doctor_id
)T1
LEFT JOIN
(
SELECT
day_id
,merchant_doctor_id
,sum(service_budget) as tot_service_budget
FROM
(
SELECT
substr(clicklog.create_time,1,10) AS day_id
,clicklog.merchant_doctor_id,clicklog.service_id
,max(service_budget) as service_budget
FROM
(
SELECT id,promote_id,price,service_budget,merchant_budget,merchant_doctor_id,service_id,create_time
FROM online.tl_hdfs_cpc_clicklog_view
WHERE partition_date='{partition_date}'
AND regexp_replace(substr(create_time,1,10),'-','')>= '{start_date}'
AND regexp_replace(substr(create_time,1,10),'-','')<'{end_date}'
)clicklog
GROUP BY substr(clicklog.create_time,1,10),clicklog.merchant_doctor_id,clicklog.service_id
)service_budget
GROUP BY day_id,merchant_doctor_id
)T2
ON T1.day_id=T2.day_id
AND T1.merchant_doctor_id=T2.merchant_doctor_id
)T
GROUP BY day_id
""".format(partition_date=yesterday_str, end_date=today_str, start_date=yesterday_str)
print(cpc_budget_sql)
cpc_budget_df = spark.sql(cpc_budget_sql)
cpc_budget_df.createOrReplaceTempView("cpc_budget")
cpc_budget_df.show(1)
sql_res = cpc_budget_df.collect()
for res in sql_res:
budget = res.budget
print(res)
# cpc收入、广告总消耗
cpc_income_sql = r"""
select partition_day,
sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_log' then cpc_click_num end) cpc_click_num,--- 当天cpc商品点击量
sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_flownext' then proportion_expend_amount end) cpc_proportion_expend_amount,--- 当天cpc总收入(含返点)
sum(case when advertise_type = 'cpc' AND advertise_business_type in('service') and advertise_calculate_type='cpc_flownext' then proportion_expend_recharge_amount end) cpc_proportion_expend_recharge_amount,--- 当天cpc收入(不含返点)
SUM(CASE
WHEN advertise_type = 'cpc' AND advertise_calculate_type = 'cpc_flownext' THEN
proportion_expend_amount
WHEN advertise_type = 'cpt' AND advertise_calculate_type = 'cpt_schedule' THEN
proportion_expend_amount
WHEN advertise_type IN ('browse', 'message', 'valueadded','rechargededuction') THEN
proportion_expend_amount
WHEN advertise_type = 'adjustment' AND advertise_calculate_type ='adjustment_flow' THEN
proportion_expend_amount
ELSE
0
END) tol_proportion_expend_amount --等比例返点消耗总金额
from ml.ml_c_ct_mc_merchantadclassify_indic_d
where partition_day>='{start_date}' AND partition_day <'{end_date}'
group by partition_day
""".format(partition_day=yesterday_str, end_date=today_str, start_date=yesterday_str)
print(cpc_income_sql)
cpc_income_df = spark.sql(cpc_income_sql)
cpc_income_df.createOrReplaceTempView("cpc_income")
cpc_income_df.show(1)
sql_res = cpc_income_df.collect()
for res in sql_res:
cpc_click_num = res.cpc_click_num
cpc_proportion_expend_amount = res.cpc_proportion_expend_amount
cpc_proportion_expend_recharge_amount = res.cpc_proportion_expend_recharge_amount
tol_proportion_expend_amount = res.tol_proportion_expend_amount
print(res)
#
# out_put_sql = """
# select bus_detail.referrer_search_welfare_pv / dau_view.dau as pv_div_dau,
# bus_detail.referrer_search_welfare_pv / quanzhong_dau_view.quanzhong_dau as pv_div_quanzhong_dau,
# (cpc_income.cpt_click_num + cpc_income.cpc_click_num) / bus_detail.referrer_search_welfare_pv as ad_flow_rat,
# cpc_income.cpc_proportion_expend_amount/cpc_budget.budget as budget_consumption_rate,
# cpc_income.cpc_proportion_expend_recharge_amount/cpc_income.cpc_click_num as cpc_item_pricing,
# cpc_income.tol_proportion_expend_amount as tol_proportion_expend_amount
# """
print(referrer_search_welfare_pv,welfare_pv)
pv_div_dau = welfare_pv/dau
pv_div_quanzhong_dau = welfare_pv/quanzhong_dau
search_pv_div_all_pv = referrer_search_welfare_pv / welfare_pv
ad_flow_rat = (pv + cpc_click_num) / welfare_pv
budget_consumption_rate = cpc_proportion_expend_amount/budget
cpc_item_pricing = cpc_proportion_expend_recharge_amount/cpc_click_num
cpc_flow_rat = cpc_click_num / welfare_pv
# tol_proportion_expend_amount
db = pymysql.connect(host='172.16.40.158', port=4000, user='st_user', passwd='aqpuBLYzEV7tML5RPsN1pntUzFy',
db='jerry_prod')
cursor = db.cursor()
partition_date = yesterday_str
pid = hashlib.md5(partition_date.encode("utf8")).hexdigest()
cpc_daily_click_sql = """replace into ecommerce_income_report(
pv_div_dau,pv_div_quanzhong_dau,ad_flow_rat,budget_consumption_rate,cpc_item_pricing,tol_proportion_expend_amount,partition_day,day_id,pid,search_pv_div_all_pv,cpc_flow_rat) VALUES(
{pv_div_dau},{pv_div_quanzhong_dau},{ad_flow_rat},{budget_consumption_rate},{cpc_item_pricing},{tol_proportion_expend_amount},'{partition_day}','{day_id}','{pid}',{search_pv_div_all_pv},{cpc_flow_rat});""".format(
pv_div_dau=pv_div_dau,pv_div_quanzhong_dau=pv_div_quanzhong_dau,ad_flow_rat=ad_flow_rat,budget_consumption_rate=budget_consumption_rate,
cpc_item_pricing=cpc_item_pricing,tol_proportion_expend_amount=tol_proportion_expend_amount,partition_day=today_str,search_pv_div_all_pv=search_pv_div_all_pv,
day_id=today_str,pid=pid,cpc_flow_rat=cpc_flow_rat
)
print(cpc_daily_click_sql)
# cursor.execute("set names 'UTF8'")
res = cursor.execute(cpc_daily_click_sql)
db.commit()
print(res)
# cursor.executemany()
db.close()