Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
M
meta_base_code
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
宋柯
meta_base_code
Commits
4d3b8cd8
Commit
4d3b8cd8
authored
Sep 14, 2020
by
litaolemo
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
10337cb5
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
249 additions
and
0 deletions
+249
-0
__init__.py
output/__init__.py
+6
-0
meigou_huidu_huisu.py
output/meigou_huidu_huisu.py
+243
-0
No files found.
output/__init__.py
0 → 100644
View file @
4d3b8cd8
# -*- coding:UTF-8 -*-
# @Time : 2020/9/14 14:52
# @File : __init__.py.py
# @email : litao@igengmei.com
# @author : litao
\ No newline at end of file
output/meigou_huidu_huisu.py
0 → 100644
View file @
4d3b8cd8
# -*- coding:UTF-8 -*-
# @Time : 2020/9/14 14:53
# @File : meigou_huidu_huisu.py
# @email : litao@igengmei.com
# @author : litao
# -*- coding:UTF-8 -*-
# @Time : 2020/9/4 17:07
# @File : search_meigou_ctr.py
# @email : litao@igengmei.com
# @author : litao
import
hashlib
import
json
import
pymysql
import
xlwt
,
datetime
import
redis
# from pyhive import hive
from
maintenance.func_send_email_with_file
import
send_file_email
from
typing
import
Dict
,
List
from
elasticsearch_7
import
Elasticsearch
from
elasticsearch_7.helpers
import
scan
import
sys
import
time
from
pyspark
import
SparkConf
from
pyspark.sql
import
SparkSession
,
DataFrame
# from pyspark.sql.functions import lit
# import pytispark.pytispark as pti
def
con_sql
(
sql
):
# 从数据库的表里获取数据
db
=
pymysql
.
connect
(
host
=
'172.16.40.158'
,
port
=
4000
,
user
=
'st_user'
,
passwd
=
'aqpuBLYzEV7tML5RPsN1pntUzFy'
,
db
=
'jerry_prod'
)
cursor
=
db
.
cursor
()
cursor
.
execute
(
sql
)
result
=
cursor
.
fetchall
()
db
.
close
()
return
result
startTime
=
time
.
time
()
sparkConf
=
SparkConf
()
sparkConf
.
set
(
"spark.sql.crossJoin.enabled"
,
True
)
sparkConf
.
set
(
"spark.debug.maxToStringFields"
,
"100"
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_double_read"
,
False
)
sparkConf
.
set
(
"spark.tispark.plan.allow_index_read"
,
True
)
sparkConf
.
set
(
"spark.hive.mapred.supports.subdirectories"
,
True
)
sparkConf
.
set
(
"spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive"
,
True
)
sparkConf
.
set
(
"spark.serializer"
,
"org.apache.spark.serializer.KryoSerializer"
)
sparkConf
.
set
(
"mapreduce.output.fileoutputformat.compress"
,
False
)
sparkConf
.
set
(
"mapreduce.map.output.compress"
,
False
)
sparkConf
.
set
(
"prod.gold.jdbcuri"
,
"jdbc:mysql://172.16.30.136/doris_prod?user=doris&password=o5gbA27hXHHm&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.mimas.jdbcuri"
,
"jdbc:mysql://172.16.30.138/mimas_prod?user=mimas&password=GJL3UJe1Ck9ggL6aKnZCq4cRvM&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.gaia.jdbcuri"
,
"jdbc:mysql://172.16.30.143/zhengxing?user=work&password=BJQaT9VzDcuPBqkd&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.tidb.jdbcuri"
,
"jdbc:mysql://172.16.40.158:4000/eagle?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.jerry.jdbcuri"
,
"jdbc:mysql://172.16.40.158:4000/jerry_prod?user=st_user&password=aqpuBLYzEV7tML5RPsN1pntUzFy&rewriteBatchedStatements=true"
)
sparkConf
.
set
(
"prod.tispark.pd.addresses"
,
"172.16.40.158:2379"
)
sparkConf
.
set
(
"prod.tispark.pd.addresses"
,
"172.16.40.170:4000"
)
sparkConf
.
set
(
"prod.tidb.database"
,
"jerry_prod"
)
sparkConf
.
setAppName
(
"search_diary_ctr"
)
spark
=
(
SparkSession
.
builder
.
config
(
conf
=
sparkConf
)
.
config
(
"spark.sql.extensions"
,
"org.apache.spark.sql.TiExtensions"
)
.
config
(
"spark.tispark.pd.addresses"
,
"172.16.40.170:2379"
)
.
appName
(
"search_diary_ctr"
)
.
enableHiveSupport
()
.
getOrCreate
())
spark
.
sql
(
"ADD JAR hdfs:///user/hive/share/lib/udf/brickhouse-0.7.1-SNAPSHOT.jar"
)
spark
.
sql
(
"ADD JAR hdfs:///user/hive/share/lib/udf/hive-udf-1.0-SNAPSHOT.jar"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION json_map AS 'brickhouse.udf.json.JsonMapUDF'"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION is_json AS 'com.gmei.hive.common.udf.UDFJsonFormatCheck'"
)
spark
.
sql
(
"CREATE TEMPORARY FUNCTION arrayMerge AS 'com.gmei.hive.common.udf.UDFArryMerge'"
)
task_list
=
[]
task_days
=
50
for
t
in
range
(
1
,
task_days
):
day_num
=
0
-
t
now
=
(
datetime
.
datetime
.
now
()
+
datetime
.
timedelta
(
days
=
day_num
))
last_30_day_str
=
(
now
+
datetime
.
timedelta
(
days
=-
30
))
.
strftime
(
"
%
Y
%
m
%
d"
)
today_str
=
now
.
strftime
(
"
%
Y
%
m
%
d"
)
yesterday_str
=
(
now
+
datetime
.
timedelta
(
days
=-
1
))
.
strftime
(
"
%
Y
%
m
%
d"
)
one_week_age_str
=
(
now
+
datetime
.
timedelta
(
days
=-
7
))
.
strftime
(
"
%
Y
%
m
%
d"
)
sql_search_ctr
=
r"""
SELECT
t1.partition_date as `日期`
,active_type as `系统`
,device_os_type as `活跃`
,grey_type as `灰度类型`
,round(NVL(sum(click_pv),0)/NVL(sum(exp_pv),0)*100,2) as `卡片点击pv/卡片精准曝光pv(
%
)`
,round(NVL(sum(two_click_pv),0)/NVL(sum(exp_pv),0)*100,2) as `有效二跳pv/卡片精准曝光pv(
%
)`
,round(NVL(sum(two_click_pv),0)/NVL(sum(click_pv),0)*100,2) as `有效二跳pv/卡片点击pv(
%
)`
,round(NVL(sum(cpc_exp_pv),0)/NVL(sum(exp_pv),0)*100,2) as `cpc卡片曝光pv/卡片精准曝光pv(
%
)`
,NVL(sum(click_pv),0) as `卡片点击pv`
,NVL(sum(exp_pv),0) as `卡片曝光pv`
,NVL(sum(two_click_pv),0) as `有效二跳pv`
,NVL(sum(cpc_click_pv),0) as `cpc卡片点击pv`
,NVL(sum(cpc_exp_pv),0) as `cpc卡片曝光pv`
FROM
(
SELECT partition_date
,device_os_type
,CASE WHEN active_type = '4' THEN '老活'
WHEN active_type IN ('1','2') THEN '新增' END AS active_type
,device_id
,CASE WHEN substr(md5(device_id),-1) in ('0','1','2','3','4','5','6','7') THEN '灰度' ELSE '非灰' END AS grey_type
FROM online.ml_device_day_active_status
WHERE partition_date>={start_day}
AND partition_date<= {partition_day}
AND active_type IN ('1','2','4')
)t1
JOIN
(--精准曝光
SELECT cl_id,partition_date,card_id,count(1) as exp_pv,count(CASE WHEN get_json_object(exposure_card, '$.is_cpc')=1 THEN 1 END) as cpc_exp_pv
FROM online.ml_community_precise_exposure_detail
WHERE partition_date>={start_day}
AND partition_date<= {partition_day}
AND action in ('page_precise_exposure','home_choiceness_card_exposure') --7745版本action改为page_precise_exposure
AND page_name in('welfare_home')
AND tab_name in ('精选')
AND card_content_type ='service'
and (get_json_object(exposure_card,'$.in_page_pos')='' or get_json_object(exposure_card,'$.in_page_pos') is null)
group by partition_date,cl_id,card_id
)t2
on t1.device_id=t2.cl_id and t1.partition_date=t2.partition_date
LEFT JOIN
(--卡片点击
SELECT cl_id,partition_date,params['card_id'] as card_id,count(1) as click_pv,count(CASE WHEN params['is_cpc']=1 THEN 1 ELSE 0 END) as cpc_click_pv
FROM online.bl_hdfs_maidian_updates
WHERE partition_date>={start_day}
AND partition_date<= {partition_day}
AND action='on_click_card'
AND params['tab_name']='精选'
AND params['page_name'] ='welfare_home'
AND params['card_content_type'] ='service'
GROUP BY cl_id,partition_date,params['card_id']
)t3
on t2.partition_date=t3.partition_date
and t2.cl_id=t3.cl_id
and t2.card_id=t3.card_id
LEFT JOIN
(--商祥二跳
SELECT cl_id,partition_date,params['service_id'] as service_id,count(1) as two_click_pv
FROM online.bl_hdfs_maidian_updates
WHERE partition_date>={start_day}
AND partition_date<= {partition_day}
AND (referrer in ('welfare_home')
or (params['referrer_link'] like '
%
[
%
' and json_split(params['referrer_link'])[size(json_split(params['referrer_link']))-1] in ('welfare_home')))
AND ((action in ('welfare_multiattribute_click_add','welfare_multiattribute_click_buy') AND page_name = 'welfare_detail')
or action = 'welfare_detail_click_message')
GROUP BY cl_id,partition_date,params['service_id']
)t4
on t3.partition_date=t4.partition_date
and t3.cl_id=t4.cl_id
and t3.card_id=t4.service_id
LEFT JOIN
(
SELECT distinct device_id
FROM dim.dim_device_user_staff --去除内网用户
UNION ALL
SELECT device_id
FROM ml.ml_d_ct_dv_devicespam_d --剔除刷量设备
WHERE partition_day={partition_day}
)a
on t1.device_id=a.device_id
LEFT JOIN
(
SELECT partition_date,device_id
FROM
(--找出user_id当天活跃的第一个设备id
SELECT user_id,partition_date,
if(size(device_list) > 0, device_list [ 0 ], '') AS device_id
FROM online.ml_user_updates
WHERE partition_date>={start_day}
AND partition_date<= {partition_day}
)t1
JOIN
( --医生账号
SELECT distinct user_id
FROM online.tl_hdfs_doctor_view
WHERE partition_date = {partition_day}
--马甲账号/模特用户
UNION ALL
SELECT user_id
FROM ml.ml_c_ct_ui_user_dimen_d
WHERE partition_day = {partition_day}
AND (is_puppet = 'true' or is_classifyuser = 'true')
UNION ALL
--公司内网覆盖用户
select distinct user_id
from dim.dim_device_user_staff
UNION ALL
--登陆过医生设备
SELECT distinct t1.user_id
FROM
(
SELECT user_id, v.device_id as device_id
FROM online.ml_user_history_detail
LATERAL VIEW EXPLODE(device_history_list) v AS device_id
WHERE partition_date = {partition_day}
)t1
JOIN
(
SELECT device_id
FROM online.ml_device_history_detail
WHERE partition_date = {partition_day}
AND is_login_doctor = '1'
)t2
ON t1.device_id = t2.device_id
)t2
on t1.user_id=t2.user_id
group by partition_date,device_id
)b
on t1.partition_date=b.partition_date and t1.device_id=b.device_id
where (a.device_id is NULL or a.device_id ='')
and (b.device_id is null or b.device_id ='')
GROUP BY t1.partition_date
,grey_type,active_type,device_os_type
order by 1
"""
.
format
(
partition_day
=
today_str
,
start_day
=
yesterday_str
)
print
(
sql_search_ctr
)
search_ctr_df
=
spark
.
sql
(
sql_search_ctr
)
# spam_pv_df.createOrReplaceTempView("dev_view")
search_ctr_df
.
show
(
1
)
sql_res
=
search_ctr_df
.
collect
()
for
res
in
sql_res
:
print
(
res
)
task_list
.
append
(
res
)
print
(
task_list
)
# cursor.executemany()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment