1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__
#define DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
namespace dlib
{
typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;
inline void split_rect_detections (
std::vector<rect_detection>& rect_detections,
std::vector<rectangle>& rectangles,
std::vector<double>& detection_confidences,
std::vector<double>& weight_indices
)
{
rectangles.clear();
detection_confidences.clear();
weight_indices.clear();
for (unsigned long i = 0; i < rect_detections.size(); ++i)
{
rectangles.push_back(rect_detections[i].rect);
detection_confidences.push_back(rect_detections[i].detection_confidence);
weight_indices.push_back(rect_detections[i].weight_index);
}
}
inline std::vector<dlib::rectangle> run_detector_with_upscale1 (
dlib::simple_object_detector& detector,
boost::python::object img,
const unsigned int upsampling_amount,
std::vector<double>& detection_confidences,
std::vector<double>& weight_indices
)
{
pyramid_down<2> pyr;
std::vector<rectangle> rectangles;
std::vector<rect_detection> rect_detections;
if (is_gray_python_image(img))
{
array2d<unsigned char> temp;
if (upsampling_amount == 0)
{
detector(numpy_gray_image(img), rect_detections, 0.0);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
else
{
pyramid_up(numpy_gray_image(img), temp, pyr);
unsigned int levels = upsampling_amount-1;
while (levels > 0)
{
levels--;
pyramid_up(temp);
}
detector(temp, rect_detections, 0.0);
for (unsigned long i = 0; i < rect_detections.size(); ++i)
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
upsampling_amount);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
}
else if (is_rgb_python_image(img))
{
array2d<rgb_pixel> temp;
if (upsampling_amount == 0)
{
detector(numpy_rgb_image(img), rect_detections, 0.0);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
else
{
pyramid_up(numpy_rgb_image(img), temp, pyr);
unsigned int levels = upsampling_amount-1;
while (levels > 0)
{
levels--;
pyramid_up(temp);
}
detector(temp, rect_detections, 0.0);
for (unsigned long i = 0; i < rect_detections.size(); ++i)
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
upsampling_amount);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
}
else
{
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
}
inline std::vector<dlib::rectangle> run_detector_with_upscale2 (
dlib::simple_object_detector& detector,
boost::python::object img,
const unsigned int upsampling_amount
)
{
std::vector<double> detection_confidences;
std::vector<double> weight_indices;
return run_detector_with_upscale1(detector, img, upsampling_amount,
detection_confidences, weight_indices);
}
inline boost::python::tuple run_rect_detector (
dlib::simple_object_detector& detector,
boost::python::object img,
const unsigned int upsampling_amount)
{
boost::python::tuple t;
std::vector<double> detection_confidences;
std::vector<double> weight_indices;
std::vector<rectangle> rectangles;
rectangles = run_detector_with_upscale1(detector, img, upsampling_amount,
detection_confidences, weight_indices);
return boost::python::make_tuple(rectangles,
detection_confidences, weight_indices);
}
struct simple_object_detector_py
{
simple_object_detector detector;
unsigned int upsampling_amount;
simple_object_detector_py() {}
simple_object_detector_py(simple_object_detector& _detector, unsigned int _upsampling_amount) :
detector(_detector), upsampling_amount(_upsampling_amount) {}
std::vector<dlib::rectangle> run_detector1 (boost::python::object img,
const unsigned int upsampling_amount_)
{
return run_detector_with_upscale2(detector, img, upsampling_amount_);
}
std::vector<dlib::rectangle> run_detector2 (boost::python::object img)
{
return run_detector_with_upscale2(detector, img, upsampling_amount);
}
};
}
#endif // DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__