metaprogramming.xml 27.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>

<doc>
   <title>Metaprogramming</title>

   <!-- ************************************************************************* -->

   <body>
      <br/><br/>

         <p>
         This page documents library components that provide metaprogramming sorts of functionality.  For
         the most part they are useful for putting design by contract checks into code or doing various kinds of
         clever things with templates. 
         </p>
         <p>
            For example, you might have a templated function that is templated on a type T and you want to
            make sure that T is either a char or wchar_t type.  You could place the following into your code
            and it would cause the compile to error out when T was set to something other than char or wchar_t.
            <br/>
            <tt>COMPILE_TIME_ASSERT((is_same_type&lt;T,char&gt;::value || is_same_type&lt;T,wchar_t&gt;::value));</tt>
         </p>

   </body>

   <!-- ************************************************************************* -->

   <menu width="200">
    <top>
      <section>
         <name>Objects</name>
         <item>is_pointer_type</item>
         <item>is_const_type</item>
         <item>is_reference_type</item>
         <item>is_same_type</item>
         <item>is_float_type</item>
         <item>is_convertible</item>
         <item>is_complex</item>
         <item>is_function</item>
         <item>is_signed_type</item>
         <item>is_unsigned_type</item>
         <item>static_switch</item>
         <item>noncopyable</item>
         <item>enable_if</item>
         <item>is_array2d</item>
         <item>is_graph</item>
         <item>is_rand</item>
         <item>is_matrix</item>
         <item>is_std_vector</item>
         <item>is_pair</item>
         <item>is_directed_graph</item>
         <item>is_built_in_scalar_type</item>
         <item>promote</item>
         <item>basic_type</item>
         <item>unsigned_type</item> 
         <item>tabs</item> 
         <item>tmin</item> 
         <item>tmax</item> 
      </section>
 
      <section>
         <name>Global Functions</name>
         <item>DLIB_ASSERT</item> 
         <item>DLIB_STACK_TRACE</item> 
         <item>DLIB_STACK_TRACE_NAMED</item> 
         <item>get_stack_trace</item> 
         <item>DLIB_CASSERT</item> 
         <item>COMPILE_TIME_ASSERT</item> 
         <item>ASSERT_ARE_SAME_TYPE</item> 
         <item>DLIB_ASSERT_HAS_STANDARD_LAYOUT</item> 
         <item>ASSERT_ARE_NOT_SAME_TYPE</item> 
         <item>_dT</item> 
         <item>TIME_THIS</item> 
         <item>is_same_object</item> 
         <item>assign_zero_if_built_in_scalar_type</item>
         <item>wrap_function</item>
      </section>

      <section>
         <name>Other</name>
         <item>portability_macros</item>
      </section>

    </top>  
   </menu>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->

   <components>
   
   <!-- ************************************************************************* -->

      <component>
         <name>tmin</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template to compute the min of two values at compile time.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>tmax</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template to compute the max of two values at compile time.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>tabs</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template to compute the absolute value a number at compile time.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>unsigned_type</name>
         <file>dlib/uintn.h</file>
         <spec_file link="true">dlib/uintn.h</spec_file>
         <description>
            This is a template that allows you to obtain the unsigned version 
            of any integral type.  For example, unsigned_type&lt;signed short&gt;::type ==
            unsigned short.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>static_switch</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
        To use this template you give it some number of boolean expressions and it
        tells you which one of them is true.   If more than one of them is true then
        it causes a compile time error.  It is useful for cases where you want to
        specialize a template and you want to specialize it not by
        the type of object it gets per say but instead according to the values of some
        type traits associated with the various template arguments.  A simple example of
        this can be seen in the <a href="imaging.html#assign_pixel">assign_pixel</a>'s
        implementation which can be found at the bottom of the <a href="dlib/pixel.h.html">
        dlib/pixel.h</a> file.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>enable_if</name>
         <file>dlib/enable_if.h</file>
         <description>
            This is a family of templates from the Boost C++ libraries that makes it somewhat easier to control
            template specialization.  For the details see <a href="enable_if.html">
               this page</a>.  Note that the header <tt>dlib/enable_if.h</tt> brings
               these templates into the dlib namespace.<br/>
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>noncopyable</name>
         <file>dlib/noncopyable.h</file>
         <spec_file link="true">dlib/noncopyable.h</spec_file>
         <description>
            This is a simple class that makes it easy to declare a non-copyable object.
            To use it to make your own class non-copyable just inherit from it.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_convertible</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template that can be used to determine if one type is convertible 
            into another type.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>is_complex</name>
         <file>dlib/matrix.h</file>
         <spec_file link="true">dlib/matrix/matrix_utilities.h</spec_file>
         <description>
            This is a template that can be used to determine if a type is a
            specialization of std::complex.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>is_same_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_same_type&lt;T,U&gt;::value == true when T and U are 
            the same type and false otherwise. 
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>is_float_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_float_type&lt;T&gt;::value == true when T is
            a floating point type (i.e. float, double, or long double) and false otherwise.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>is_same_object</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a templated function which checks if both of its arguments are actually
            references to the same object.  It returns true if they are and false otherwise.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>is_function</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_function&lt;T&gt;::value == true when T is 
            a function type.  
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_signed_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_signed_type&lt;T&gt;::value == true when T is
            a signed integral type and false when it is an unsigned integral
            type.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_unsigned_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_unsigned_type&lt;T&gt;::value == true when T is
            an unsigned integral type and false when it is a signed integral
            type.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_directed_graph</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_directed_graph&lt;T&gt;::value == true when T
            is a <a href="containers.html#directed_graph">directed_graph</a> object.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_built_in_scalar_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_built_in_scalar_type&lt;T&gt;::value == true when T
            is a built in scalar type such as int, char, float, etc.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>promote</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
        This is a template that takes one of the built in scalar types and gives you another
        scalar type that should be big enough to hold sums of values from the original scalar 
        type.  The new scalar type will also always be signed.

         <p>
        For example, promote&lt;uint16&gt;::type == int32
         </p>
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>basic_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
        This is a template that takes a type and strips off any const, volatile, or reference
        qualifiers and gives you back the basic underlying type.  

         <p>
        For example, promote&lt;const int&amp;&gt;::type == int 
         </p>
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>is_std_vector</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_std_vector&lt;T&gt;::value == true when T
            is a <a href="containers.html#std_vector_c">std_vector_c</a> or std::vector object.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_pair</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_pair&lt;T&gt;::value == true when T
            is a std::pair object.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>is_matrix</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_matrix&lt;T&gt;::value == true when T
            is a <a href="containers.html#matrix">matrix</a> object or some kind
            of matrix expression.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>is_graph</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_graph&lt;T&gt;::value == true when T
            is a <a href="containers.html#graph">graph</a> object.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_array2d</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_array2d&lt;T&gt;::value == true when T
            is an <a href="containers.html#array2d">array2d</a> object.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_rand</name>
         <file>dlib/is_kind.h</file>
         <spec_file link="true">dlib/is_kind.h</spec_file>
         <description>
            This is a template where is_rand&lt;T&gt;::value == true when T
            is a <a href="algorithms.html#rand">rand</a> object.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_reference_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_reference_type&lt;T&gt;::value == true when T is a reference 
            type and false otherwise.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>is_const_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_const_type&lt;T&gt;::value == true when T is a const 
            type and false otherwise.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      
      <component>
         <name>is_pointer_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a template where is_pointer_type&lt;T&gt;::value == true when T is a pointer 
            type and false otherwise.
         </description>
         
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>ASSERT_ARE_NOT_SAME_TYPE</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/assert.h</spec_file>
         <description>
      <p>
            This is a macro function for debugging.  Its form is <tt>ASSERT_ARE_NOT_SAME_TYPE(type1, type2)</tt>.  
            If type1 and type2 are the same type then the compile will fail.  This is sometimes useful 
            in validating template arguments.
      </p>
         </description>
                                 
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>ASSERT_ARE_SAME_TYPE</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/assert.h</spec_file>
         <description>
      <p>
            This is a macro function for debugging.  Its form is <tt>ASSERT_ARE_SAME_TYPE(type1, type2)</tt>.  
            If type1 and type2 are not the same type then the compile will fail.  This is sometimes useful 
            in validating template arguments.
      </p>
         </description>
                                 
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>DLIB_ASSERT_HAS_STANDARD_LAYOUT</name>
         <file>dlib/assert.h</file>
         <spec_file link="true">dlib/assert.h</spec_file>
         <description>
      <p>
        This macro is meant to cause a compiler error if a type doesn't have a simple
        memory layout (like a C struct). In particular, types with simple layouts are
        ones which can be copied via memcpy().
      </p>
        
        This was called a POD type in C++03 and in C++0x we are looking to check if 
        it is a "standard layout type".  Once we can use C++0x we can change this macro 
        to something that uses the std::is_standard_layout type_traits class.  
        See: http://www2.research.att.com/~bs/C++0xFAQ.html#PODs
         </description>
                                 
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>COMPILE_TIME_ASSERT</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/assert.h</spec_file>
         <description>
      <p>
            This is a macro function for debugging.  Its form is <tt>COMPILE_TIME_ASSERT(condition that should 
            be true)</tt>.  The condition must be a compile time constant and if it is false then the compile
            will fail.
      </p>
         </description>
                                 
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>DLIB_CASSERT</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/assert.h</spec_file>
         <description>
      <p>
         This is a macro function that is identical to the <a href="#DLIB_ASSERT">DLIB_ASSERT</a> macro
         except that it is always enabled.  Even if _DEBUG, DEBUG and ENABLE_ASSERTS are not defined.
      </p>
      <p>
         Note that when this macro fails and throws an exception it also calls the global
         C function dlib_assert_breakpoint().  This behavior makes it easy to set a debugging
         tool to break when DLIB_CASSERT fails by setting a breakpoint on dlib_assert_breakpoint().
      </p>
         </description>
                                 
      </component>
            
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>DLIB_ASSERT</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/assert.h</spec_file>
         <description>
      <p>
            This is a macro function for debugging.  Its form is <tt>DLIB_ASSERT(condition that should be 
            true,error message)</tt>.  If the condition is false DLIB_ASSERT throws an exception of type 
            dlib::fatal_error with fatal_error::type == EBROKEN_ASSERT.  An error message detailing
            the nature of the problem is stored in the member variable info which is of type std::string.  
            Look in the following file for more details.  The exception classes are defined 
            <a href="dlib/error.h.html#error">here</a>.
      </p>
      <p>
         This macro is only enabled if _DEBUG, DEBUG or ENABLE_ASSERTS is defined.  Also, if this macro <i>is</i>
         enabled then ENABLE_ASSERTS will be defined even if you didn't define it.
      </p>
      <p>
         Note that when this macro fails and throws an exception it also calls the global
         C function dlib_assert_breakpoint().  This behavior makes it easy to set a debugging
         tool to break when DLIB_ASSERT fails by setting a breakpoint on dlib_assert_breakpoint().
      </p>
         </description>
                                 
      </component>
            
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>DLIB_STACK_TRACE</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/stack_trace.h</spec_file>
         <description>
         <p>
            This is a preprocessor macro that allows you to tag a function so 
            that dlib will keep track of it in a function call stack.  That is,
            you will be able to see a stack trace by calling <a href="#get_stack_trace">get_stack_trace</a>
            if you put this macro at the top of your functions.
         </p>
         <p>
            This macro is only enabled if DLIB_ENABLE_STACK_TRACE is defined.  If it isn't defined then
            this macro doesn't do anything.  Also note that when this macro is defined it will
            cause <a href="#DLIB_ASSERT">DLIB_ASSERT</a> and <a href="#DLIB_CASSERT">DLIB_CASSERT</a>
            to include a stack trace in their error messages.
         </p>
         </description>
                                 
      </component>
            
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>DLIB_STACK_TRACE_NAMED</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/stack_trace.h</spec_file>
         <description>
            This is a preprocessor macro just like <a href="#DLIB_STACK_TRACE">DLIB_STACK_TRACE</a>
            except that it allows you to supply your own string to use as the function name
            in the stack trace instead of the one deduced by DLIB_STACK_TRACE.
            <p>
               This macro is only enabled if DLIB_ENABLE_STACK_TRACE is defined.  
            </p>
         </description>
                                 
      </component>
            
   <!-- ************************************************************************* -->

      <component>
         <name>get_stack_trace</name>
         <file>dlib/assert.h</file>
         <spec_file>dlib/stack_trace.h</spec_file>
         <description>
            This function allows you to query the current stack trace.
            <p>
               This macro is only enabled if DLIB_ENABLE_STACK_TRACE is defined.  
            </p>
         </description>
                                 
      </component>
            
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>_dT</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>
            This is a macro function for converting a string/character literal to either a char or wchar_t literal. 
   Its form is <tt>_dT(target character type,string or character literal)</tt>
         </description>
                                 
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>assign_zero_if_built_in_scalar_type</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>        
            <p>
               This function assigns its argument the value of 0 if it is a built in scalar
               type according to the <a href="#is_built_in_scalar_type">is_built_in_scalar_type</a>
               template.  If it isn't a built in scalar type then it does nothing.
            </p>
            <p>
               This function is useful for suppressing compiler warnings about uninitialized 
               types inside of templates that are designed to accept the built in types
               as well as user defined classes.
            </p>
            
         </description>
                                 
      </component>
            
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>wrap_function</name>
         <file>dlib/algs.h</file>
         <spec_file link="true">dlib/algs.h</spec_file>
         <description>        
            This is a template that allows you to turn a global function into a 
            function object.  See the specs for more details. 
         </description>
                                 
      </component>
            

   <!-- ************************************************************************* -->

      <component>
         <name>TIME_THIS</name>
         <file>dlib/time_this.h</file>
         <spec_file>dlib/time_this.h</spec_file>
         <description>        
            <p>
            This is a macro function for timing blocks of code.  Its form is <tt>TIME_THIS(whatever you want to time)</tt>
            It's pretty straight forward. It just prints the time it took to std::cout.
            </p>
            <p>
            There is another version of this function called TIME_THIS_TO which takes as a parameter an ostream
            object to write its output to.  Its form is <tt>TIME_THIS_TO(what you want to time, the output stream)</tt>;
            </p>
            
         </description>
                                 
      </component>
            

   <!-- ************************************************************************* -->

      <component>
         <name>portability_macros</name>
         <file>dlib/platform.h</file>
         <spec_file>dlib/platform.h</spec_file>
         <description>        
            This file #defines various macros depending on the platform being compiled under. 
            See the file itself for the specifics.
         </description>
                                 
      </component>
            
         
   <!-- ************************************************************************* -->
      
   </components>

   <!-- ************************************************************************* -->


</doc>