1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>
<doc>
<title>Containers</title>
<!-- ************************************************************************* -->
<body>
<br/><br/>
<p>
Many of these containers were inspired by the RESOLVE/C++ course sequence at Ohio State. As such, most of
the objects do not support copying in any form, only swapping is allowed. That is, when objects
are added or removed from any of these containers they are swapped in and out, not copied.
This allows you to do things like have containers of containers of containers without encountering the
overhead of the massive copying that would likely result if you did the same thing with the STL.
</p>
<p>
To use any of these containers all you need to do is #include the file indicated in the
short section about the component you would like to use. Then pick which implementation you
would like and typedef it to something nice. Here is an example of creating a typedef for
a set of integers using the first kernel implementation. <br/>
<tt>typedef dlib::set<int>::kernel_1a set_of_ints;</tt>
</p>
<p>
Note that it is assumed by these containers that swap() and operator< do not throw. They
may not function correctly if this assumption is broken. Also note that the built in types (int, long,
char, etc...) and std::string will not cause operator< or swap() to throw.
</p>
<p>
Note also that most of the containers inherit from the <a href="#enumerable">enumerable</a>
interface. Thus, all the member functions inherited from enumerable are defined
in the enumerable class and their documentation is not repeated in each
container's documentation. This includes the size() member function in each
container.
</p>
</body>
<!-- ************************************************************************* -->
<menu width="150">
<top>
<section>
<name>Objects</name>
<item>static_set</item>
<item>array</item>
<item>array2d</item>
<item>binary_search_tree</item>
<item>hash_map</item>
<item>hash_set</item>
<item>hash_table</item>
<item>directed_graph</item>
<item>graph</item>
<item>map</item>
<item>matrix</item>
<item>queue</item>
<item>reference_counter</item>
<item>sequence</item>
<item>set</item>
<item>stack</item>
<item>std_vector_c</item>
<item>static_map</item>
<item>sliding_buffer</item>
<item>tuple</item>
<item nolink="true">
<name>smart pointers</name>
<sub>
<item>scoped_ptr</item>
<item>shared_ptr</item>
<item>weak_ptr</item>
</sub>
</item>
</section>
<section>
<name>Interfaces</name>
<item>map_pair</item>
<item>enumerable</item>
<item>
<name>remover</name>
<sub>
<item>
<name>remover</name>
<link>dlib/interfaces/remover.h.html#remover</link>
</item>
<item>
<name>asc_remover</name>
<link>dlib/interfaces/remover.h.html#asc_remover</link>
</item>
<item>
<name>pair_remover</name>
<link>dlib/interfaces/remover.h.html#pair_remover</link>
</item>
<item>
<name>asc_pair_remover</name>
<link>dlib/interfaces/remover.h.html#asc_pair_remover</link>
</item>
</sub>
</item>
</section>
</top>
</menu>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<components>
<component checked="true">
<name>array</name>
<file>dlib/array.h</file>
<spec_file>dlib/array/array_kernel_abstract.h</spec_file>
<description>
This object is just like a C style array and the accessor functions operate
in constant time.
</description>
<implementations>
<implementation>
<name>array_kernel_1</name>
<file>dlib/array/array_kernel_1.h</file>
<description>
This implementation is done using an array of pointers, each of which point to
small sections of the array. This implementation allows the array to use only
about as much memory as it needs at any given time.
It does not use the <a href="other.html#memory_manager">memory_manager</a> at all.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for array_kernel_1</description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>array_kernel_2</name>
<file>dlib/array/array_kernel_2.h</file>
<description>
This implementation is done using a single array of max_size() elements. So this
is just a simple layer on top of a C style array.
It uses the <a href="other.html#memory_manager">memory_manager</a> for all
memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_2a</name>
<description>is a typedef for array_kernel_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
<extensions>
<extension>
<name>array_sort</name>
<spec_file>dlib/array/array_sort_abstract.h</spec_file>
<description>
This extension gives an array the ability to sort its contents.
</description>
<implementations>
<implementation>
<name>array_sort_1</name>
<file>dlib/array/array_sort_1.h</file>
<description>
This is a version of the QuickSort algorithm. It swaps the entire array into a C
style array, sorts it and then swaps it back into the array object.
</description>
<typedefs>
<typedef>
<name>sort_1a</name>
<description>is a typedef for array_kernel_1a extended by array_sort_1</description>
</typedef>
<typedef>
<name>sort_1b</name>
<description>is a typedef for array_kernel_2a extended by array_sort_1</description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>array_sort_2</name>
<file>dlib/array/array_sort_2.h</file>
<description>
This is a version of the QuickSort algorithm.
</description>
<typedefs>
<typedef>
<name>sort_2a</name>
<description>is a typedef for array_kernel_1a extended by array_sort_2</description>
</typedef>
<typedef>
<name>sort_2b</name>
<description>is a typedef for array_kernel_2a extended by array_sort_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
<extension>
<name>array_expand</name>
<spec_file>dlib/array/array_expand_abstract.h</spec_file>
<description>
This extension gives an array the ability to expand its size() beyond
its max_size() without clearing out all its elements. It also adds a set of pop/push_back()
functions similar to the ones in the std::vector object.
</description>
<implementations>
<implementation>
<name>array_expand_1</name>
<file>dlib/array/array_expand_1.h</file>
<description>
This is implemented by creating a new bigger array if max_size() isn't big enough,
swapping everything into that new array, and then swapping that array with *this.
</description>
<typedefs>
<typedef>
<name>expand_1a</name>
<description>is a typedef for array_sort_1a extended by array_expand_1</description>
</typedef>
<typedef>
<name>expand_1b</name>
<description>is a typedef for array_sort_1b extended by array_expand_1</description>
</typedef>
<typedef>
<name>expand_1c</name>
<description>is a typedef for array_sort_2a extended by array_expand_1</description>
</typedef>
<typedef>
<name>expand_1d</name>
<description>is a typedef for array_sort_2b extended by array_expand_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
</extensions>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>sliding_buffer</name>
<file>dlib/sliding_buffer.h</file>
<spec_file>dlib/sliding_buffer/sliding_buffer_kernel_abstract.h</spec_file>
<description>
This object represents an array with the ability to rotate its contents
left or right.
</description>
<implementations>
<implementation>
<name>sliding_buffer_kernel_1</name>
<file>dlib/sliding_buffer/sliding_buffer_kernel_1.h</file>
<description>
This object is implemented using a C style array in the obvious way. See the code for details.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for sliding_buffer_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>array2d</name>
<file>dlib/array2d.h</file>
<spec_file>dlib/array2d/array2d_kernel_abstract.h</spec_file>
<description>
This object represents a 2-Dimensional array of objects.
</description>
<examples>
<example>image_ex.cpp.html</example>
</examples>
<implementations>
<implementation>
<name>array2d_kernel_1</name>
<file>dlib/array2d/array2d_kernel_1.h</file>
<description>
This is implemented in the obvious way. See the source for details.
It uses the <a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for array2d_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>binary_search_tree</name>
<file>dlib/binary_search_tree.h</file>
<spec_file>dlib/binary_search_tree/binary_search_tree_kernel_abstract.h</spec_file>
<description>
This object represents a data dictionary that is built on top of some kind of binary search tree.
</description>
<implementations>
<implementation>
<name>binary_search_tree_kernel_1</name>
<file>dlib/binary_search_tree/binary_search_tree_kernel_1.h</file>
<description>
This implementation is done using an AVL binary search tree. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for binary_search_tree_kernel_1</description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>binary_search_tree_kernel_2</name>
<file>dlib/binary_search_tree/binary_search_tree_kernel_2.h</file>
<description>
This implementation is done using a red-black binary search tree. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_2a</name>
<description>is a typedef for binary_search_tree_kernel_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>hash_map</name>
<file>dlib/hash_map.h</file>
<spec_file>dlib/hash_map/hash_map_kernel_abstract.h</spec_file>
<description>
This object represents a hashed mapping of items of type domain onto items of type range.
</description>
<implementations>
<implementation>
<name>hash_map_kernel_1</name>
<file>dlib/hash_map/hash_map_kernel_1.h</file>
<description>
This implementation is done using a <a href="#hash_table">hash_table</a> object. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for hash_map_kernel_1 that uses hash_table_kernel_1a</description>
</typedef>
<typedef>
<name>kernel_1b</name>
<description>is a typedef for hash_map_kernel_1 that uses hash_table_kernel_2a</description>
</typedef>
<typedef>
<name>kernel_1c</name>
<description>is a typedef for hash_map_kernel_1 that uses hash_table_kernel_2b</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>hash_set</name>
<file>dlib/hash_set.h</file>
<spec_file>dlib/hash_set/hash_set_kernel_abstract.h</spec_file>
<description>
This object represents a hashed unordered and unaddressed collection of unique items.
</description>
<implementations>
<implementation>
<name>hash_set_kernel_1</name>
<file>dlib/hash_set/hash_set_kernel_1.h</file>
<description>
This implementation is done using a <a href="#hash_table">hash_table</a> object. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for hash_set_kernel_1 that uses hash_table_kernel_1a</description>
</typedef>
<typedef>
<name>kernel_1b</name>
<description>is a typedef for hash_set_kernel_1 that uses hash_table_kernel_2a</description>
</typedef>
<typedef>
<name>kernel_1c</name>
<description>is a typedef for hash_set_kernel_1 that uses hash_table_kernel_2b</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>hash_table</name>
<file>dlib/hash_table.h</file>
<spec_file>dlib/hash_table/hash_table_kernel_abstract.h</spec_file>
<description>
This object represents a data dictionary that is built on top of some kind of
hash table.
</description>
<implementations>
<implementation>
<name>hash_table_kernel_1</name>
<file>dlib/hash_table/hash_table_kernel_1.h</file>
<description>
This implementation is done using singly linked lists as hashing buckets. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for hash_table_kernel_1. </description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>hash_table_kernel_2</name>
<file>dlib/hash_table/hash_table_kernel_2.h</file>
<description>
This implementation is done using <a href="#binary_search_tree">
binary_search_tree</a> objects as hashing buckets. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_2a</name>
<description>is a typedef for hash_table_kernel_2 that uses binary_search_tree_kernel_1</description>
</typedef>
<typedef>
<name>kernel_2b</name>
<description>is a typedef for hash_table_kernel_2 that uses binary_search_tree_kernel_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>map</name>
<file>dlib/map.h</file>
<spec_file>dlib/map/map_kernel_abstract.h</spec_file>
<description>
This object represents a mapping of items of type domain onto items of type range.
</description>
<implementations>
<implementation>
<name>map_kernel_1</name>
<file>dlib/map/map_kernel_1.h</file>
<description>
This is implemented using the <a href="#binary_search_tree">binary_search_tree</a> component. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for map_kernel_1 that uses binary_search_tree_kernel_1</description>
</typedef>
<typedef>
<name>kernel_1b</name>
<description>is a typedef for map_kernel_1 that uses binary_search_tree_kernel_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component>
<name>enumerable</name>
<file>dlib/interfaces/enumerable.h</file>
<spec_file>dlib/interfaces/enumerable.h</spec_file>
<description>
This object is an abstract class which represents an interface for iterating over
all the elements of a container.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>map_pair</name>
<file>dlib/interfaces/map_pair.h</file>
<spec_file>dlib/interfaces/map_pair.h</spec_file>
<description>
This object is an abstract class which represents an interface for accessing a
pair from a container such as the map, hash_table, etc...
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>remover</name>
<file>dlib/interfaces/remover.h</file>
<spec_file>dlib/interfaces/remover.h</spec_file>
<description>
This is a set of interfaces which gives the ability to remove all the items in a
container without actually knowing what kind of container contains them.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>weak_ptr</name>
<file>dlib/smart_pointers.h</file>
<spec_file>dlib/smart_pointers/weak_ptr_abstract.h</spec_file>
<description>
<p>
The weak_ptr class template stores a weak reference to an object that is
already managed by a shared_ptr. To access the object, a weak_ptr can
be converted to a shared_ptr using the member function lock().
</p>
<p>
This is an implementation of the std::tr1::weak_ptr template from the
document ISO/IEC PDTR 19768, Proposed Draft Technical Report on C++
Library Extensions. The only deviation from that document is that this
shared_ptr is declared inside the dlib namespace rather than std::tr1.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>shared_ptr</name>
<file>dlib/smart_pointers.h</file>
<spec_file>dlib/smart_pointers/shared_ptr_abstract.h</spec_file>
<description>
<p>
This object represents a reference counted smart pointer. Each shared_ptr
contains a pointer to some object and when the last shared_ptr that points
to the object is destructed or reset() then the object is guaranteed to be
deleted.
</p>
<p>
This is an implementation of the std::tr1::shared_ptr template from the
document ISO/IEC PDTR 19768, Proposed Draft Technical Report on C++
Library Extensions. The only deviation from that document is that this
shared_ptr is declared inside the dlib namespace rather than std::tr1.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>tuple</name>
<file>dlib/tuple.h</file>
<spec_file>dlib/tuple/tuple_abstract.h</spec_file>
<description>
This is an implementation of a very simple templated container object.
It contains between 0 and 31 objects where each object is listed
explicity in the tuple's template arguments.
<p>
Note that there is only one implementation of this object so there aren't any
different kernels to choose from when you create instances of the matrix object.
So for example, you
could declare a tuple of 3 ints using the following statement:
<tt>dlib::tuple<int,int,int> t;</tt>
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>scoped_ptr</name>
<file>dlib/smart_pointers.h</file>
<spec_file>dlib/smart_pointers/scoped_ptr_abstract.h</spec_file>
<description>
This is a implementation of the scoped_ptr class found in the Boost C++
library. It is a simple smart pointer class which guarantees that the
pointer contained within it will always be deleted.
The class does not permit copying and so does not do any kind of
reference counting. Thus it is very simple and quite fast.
</description>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>graph</name>
<file>dlib/graph.h</file>
<spec_file>dlib/graph/graph_kernel_abstract.h</spec_file>
<description>
This object represents a graph which is a set of nodes with undirected
edges connecting various nodes.
</description>
<implementations>
<implementation>
<name>graph_kernel_1</name>
<file>dlib/graph/graph_kernel_1.h</file>
<description>
This is implemented using std::vector to contain all the nodes and edges.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for graph_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>directed_graph</name>
<file>dlib/directed_graph.h</file>
<spec_file>dlib/directed_graph/directed_graph_kernel_abstract.h</spec_file>
<description>
This object represents a directed graph which is a set of nodes with directed
edges connecting various nodes.
</description>
<implementations>
<implementation>
<name>directed_graph_kernel_1</name>
<file>dlib/directed_graph/directed_graph_kernel_1.h</file>
<description>
This is implemented using std::vector to contain all the nodes and edges.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for directed_graph_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>queue</name>
<file>dlib/queue.h</file>
<spec_file>dlib/queue/queue_kernel_abstract.h</spec_file>
<description>
This object represents a first in first out queue.
</description>
<examples>
<example>dir_nav_ex.cpp.html</example>
<example>queue_ex.cpp.html</example>
</examples>
<implementations>
<implementation>
<name>queue_kernel_1</name>
<file>dlib/queue/queue_kernel_1.h</file>
<description>
This is implemented in the obvious way using a singly linked list. It does not use the
<a href="other.html#memory_manager">memory_manager</a> at all.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for queue_kernel_1</description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>queue_kernel_2</name>
<file>dlib/queue/queue_kernel_2.h</file>
<description>
This is implemented using a singly linked list and each node in the list
contains block_size (a template parameter) elements. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_2a</name>
<description>is a typedef for queue_kernel_2 with a block_size of 20</description>
</typedef>
<typedef>
<name>kernel_2b</name>
<description>is a typedef for queue_kernel_2 with a block_size of 100</description>
</typedef>
</typedefs>
</implementation>
</implementations>
<extensions>
<extension>
<name>queue_sort</name>
<spec_file>dlib/queue/queue_sort_abstract.h</spec_file>
<description>
This extension gives a queue the ability to sort its contents.
</description>
<implementations>
<implementation>
<name>queue_sort_1</name>
<file>dlib/queue/queue_sort_1.h</file>
<description>
This is a version of the QuickSort algorithm.
</description>
<typedefs>
<typedef>
<name>sort_1a</name>
<description>is a typedef for queue_kernel_1a extended by queue_sort_1</description>
</typedef>
<typedef>
<name>sort_1b</name>
<description>is a typedef for queue_kernel_2a extended by queue_sort_1</description>
</typedef>
<typedef>
<name>sort_1c</name>
<description>is a typedef for queue_kernel_2b extended by queue_sort_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
</extensions>
</component>
<!-- ************************************************************************* -->
<component>
<name>reference_counter</name>
<file>dlib/reference_counter.h</file>
<spec_file>dlib/reference_counter/reference_counter_kernel_abstract.h</spec_file>
<description>
This object represents a container for an object and provides reference counting
capabilities for the object it contains.
</description>
<implementations>
<implementation>
<name>reference_counter_kernel_1</name>
<file>dlib/reference_counter/reference_counter_kernel_1.h</file>
<description>
This implementation is done using pointers in the obvious way.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for reference_counter_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>sequence</name>
<file>dlib/sequence.h</file>
<spec_file>dlib/sequence/sequence_kernel_abstract.h</spec_file>
<description>
This object represents an ordered sequence of items, each item is
associated with an integer value. The items are numbered from 0 to the number of items in the
sequence minus 1.
</description>
<implementations>
<implementation>
<name>sequence_kernel_1</name>
<file>dlib/sequence/sequence_kernel_1.h</file>
<description>
This is implemented as an AVL binary search tree.
Accessing(or adding or removing) an element always takes O(log n) time.
It uses the <a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for sequence_kernel_1</description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>sequence_kernel_2</name>
<file>dlib/sequence/sequence_kernel_2.h</file>
<description>
This implementation is done using a doubly linked list in the shape of a ring.
It will remember the last element accessed(or added or removed) and give O(1)
access time to the elements just left and right of it. Aside from that,
accessing(or adding or removing) a random element will take O(n) and in the worst
case it will take time proportional to the size of the sequence/2.
<p>
It does not use the
<a href="other.html#memory_manager">memory_manager</a> at all.
</p>
</description>
<typedefs>
<typedef>
<name>kernel_2a</name>
<description>is a typedef for sequence_kernel_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
<extensions>
<extension>
<name>sequence_sort</name>
<spec_file>dlib/sequence/sequence_sort_abstract.h</spec_file>
<description>
This extension gives a sequence the ability to sort its contents.
</description>
<implementations>
<implementation>
<name>sequence_sort_1</name>
<file>dlib/sequence/sequence_sort_1.h</file>
<description>
This is a version of the QuickSort algorithm and it sorts sequences of less
than 30 elements with a selection sort. This implementation is fastest when
used with sequence_kernel_2 and fairly slow when used with sequence_kernel_1
</description>
<typedefs>
<typedef>
<name>sort_1a</name>
<description>is a typedef for sequence_kernel_2a extended by sequence_sort_1</description>
</typedef>
</typedefs>
</implementation>
<implementation>
<name>sequence_sort_2</name>
<file>dlib/sequence/sequence_sort_2.h</file>
<description>
This is a version of the QuickSort algorithm. This implementation of sort is
the best to use with sequence_kernel_1 objects but gives extremely poor performance
with sequence_kernel_2 objects.
</description>
<typedefs>
<typedef>
<name>sort_2a</name>
<description>is a typedef for sequence_kernel_1a extended by sequence_sort_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
<extension>
<name>sequence_compare</name>
<spec_file>dlib/sequence/sequence_compare_abstract.h</spec_file>
<description>
This extension gives sequences the ability to compare themselves using
operator< and operator==. Thus they can be used in the other container classes
that require this ability. (maps, sets, etc...)
</description>
<implementations>
<implementation>
<name>sequence_compare_1</name>
<file>dlib/sequence/sequence_compare_1.h</file>
<description>
The implementation is obvious. Click on the sequence_compare_1 link if you want to see.
</description>
<typedefs>
<typedef>
<name>compare_1a</name>
<description>is a typedef for sequence_kernel_1a extended by sequence_compare_1</description>
</typedef>
<typedef>
<name>compare_1b</name>
<description>is a typedef for sequence_kernel_2a extended by sequence_compare_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
</extensions>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>set</name>
<file>dlib/set.h</file>
<spec_file>dlib/set/set_kernel_abstract.h</spec_file>
<description>
This object represents an unordered and unaddressed collection of unique items.
</description>
<implementations>
<implementation>
<name>set_kernel_1</name>
<file>dlib/set/set_kernel_1.h</file>
<description>
This is implemented using the <a href="#binary_search_tree">binary_search_tree</a> component. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for set_kernel_1 that uses binary_search_tree_kernel_1</description>
</typedef>
<typedef>
<name>kernel_1b</name>
<description>is a typedef for set_kernel_1 that uses binary_search_tree_kernel_2</description>
</typedef>
</typedefs>
</implementation>
</implementations>
<extensions>
<extension>
<name>set_compare</name>
<spec_file>dlib/set/set_compare_abstract.h</spec_file>
<description>
This extension gives sets the ability to compare themselves using operator< and
operator==. Thus they can be used in the other container classes that require
this ability. (maps, sets, etc...)
</description>
<implementations>
<implementation>
<name>set_compare_1</name>
<file>dlib/set/set_compare_1.h</file>
<description>
The implementation is obvious. Click on the set_compare_1 link if you want to see.
</description>
<typedefs>
<typedef>
<name>compare_1a</name>
<description>is a typedef for set_kernel_1a extended by set_compare_1</description>
</typedef>
<typedef>
<name>compare_1b</name>
<description>is a typedef for set_kernel_1b extended by set_compare_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
</extensions>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>stack</name>
<file>dlib/stack.h</file>
<spec_file>dlib/stack/stack_kernel_abstract.h</spec_file>
<description>
This object represents a last in first out stack.
</description>
<implementations>
<implementation>
<name>stack_kernel_1</name>
<file>dlib/stack/stack_kernel_1.h</file>
<description>
This implementation is done in the obvious way using a singly linked list. It uses the
<a href="other.html#memory_manager">memory_manager</a> for all memory allocations.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for stack_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>static_map</name>
<file>dlib/static_map.h</file>
<spec_file>dlib/static_map/static_map_kernel_abstract.h</spec_file>
<description>
This object represents a mapping of items of type domain onto items of type range.
The difference between this object and the normal <a href="#map">map</a> object is that it does not support adding
or removing individual objects from itself. This allows implementations to focus on using less memory and
achieving faster searching.
</description>
<implementations>
<implementation>
<name>static_map_kernel_1</name>
<file>dlib/static_map/static_map_kernel_1.h</file>
<description>
This implementation is just a sorted array which can be searched using a binary search.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for static_map_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</component>
<!-- ************************************************************************* -->
<component checked="true">
<name>static_set</name>
<file>dlib/static_set.h</file>
<spec_file>dlib/static_set/static_set_kernel_abstract.h</spec_file>
<description>
This object represents an unordered and unaddressed collection of items.
The difference between this object and the normal <a href="#set">set</a> object is that it does not support adding
or removing individual objects from itself. This allows implementations to focus on using less memory and
achieving faster searching.
</description>
<examples>
<example>dir_nav_ex.cpp.html</example>
</examples>
<implementations>
<implementation>
<name>static_set_kernel_1</name>
<file>dlib/static_set/static_set_kernel_1.h</file>
<description>
This implementation is just a sorted array which can be searched using a binary search.
</description>
<typedefs>
<typedef>
<name>kernel_1a</name>
<description>is a typedef for static_set_kernel_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
<extensions>
<extension>
<name>static_set_compare</name>
<spec_file>dlib/static_set/static_set_compare_abstract.h</spec_file>
<description>
This extension gives static_sets the ability to compare themselves using operator< and
operator==. Thus they can be used in the other container classes that require
this ability. (maps, static_sets, etc...)
</description>
<implementations>
<implementation>
<name>static_set_compare_1</name>
<file>dlib/static_set/static_set_compare_1.h</file>
<description>
The implementation is obvious. Click on the static_set_compare_1 link if you want to see.
</description>
<typedefs>
<typedef>
<name>compare_1a</name>
<description>is a typedef for static_set_kernel_1a extended by static_set_compare_1</description>
</typedef>
</typedefs>
</implementation>
</implementations>
</extension>
</extensions>
</component>
<!-- ************************************************************************* -->
<component>
<name>matrix</name>
<file>dlib/matrix.h</file>
<spec_file link="true">dlib/matrix/matrix_abstract.h</spec_file>
<description>
This is a 2D matrix object. It is implemented using the expression templates
technique which allows us to eliminate the temporary matrix objects that would
normally be returned from expressions such as M = A+B+C+D; Normally each
invocation of the + operator would construct and return a temporary matrix
object but using this technique we can avoid creating all of these temporary
objects and receive a large speed boost.
<p>
Note that there is only one implementation of this object so there aren't any
different kernels to choose from when you create instances of the matrix object.
So for example, you
could declare a matrix of 2 rows and 3 columns using the following statement:
<tt>dlib::matrix<float,2,3> m;</tt>
</p>
<p>
It should also be noted that matrix multiplication is fastest when the two matrices
being multiplied are not complex matrix_exp objects returned from other expressions
(such as other matrix multiplies). This is because the matrix multiply operator will
evaluate each element of the matrices it is multiplying many times, and a matrix_exp
computes its elements' values each time they are queried. However, the matrix multiply
operator is the only one that evaluates its argument's elements multiple times so you can
stack up all the other operators however you want without any performance penalty. If
you want to multiply two complex matrix_exp expressions together you can easily convert them into
fully evaluated temporary matrix objects by using the tmp() function. For example, to
multiply four matrices together you should use an expression such as <tt>result = tmp(a*b)*tmp(c*d);</tt>
</p>
</description>
<examples>
<example>matrix_ex.cpp.html</example>
</examples>
<extensions>
<extension>
<name>matrix_utilities</name>
<spec_file>dlib/matrix/matrix_utilities_abstract.h</spec_file>
<description>This extension contains miscellaneous utility functions
for manipulating matrix objects. Note that you don't need to #include
anything to get them. They are included by the <a href="dlib/matrix.h.html">dlib/matrix.h</a> file for you.
</description>
</extension>
<extension>
<name>matrix_math_functions</name>
<spec_file>dlib/matrix/matrix_math_functions_abstract.h</spec_file>
<description>This extension contains mathematical functions that operate on each
element of a matrix independently. Note that you don't need to #include
anything to get them. They are included by the <a href="dlib/matrix.h.html">dlib/matrix.h</a> file for you.
</description>
</extension>
</extensions>
</component>
<!-- ************************************************************************* -->
<component>
<name>std_vector_c</name>
<file>dlib/stl_checked.h</file>
<spec_file link="true">dlib/stl_checked/std_vector_c_abstract.h</spec_file>
<description>
This object is a simple wrapper around the std::vector object. It
provides an identical interface but also checks the preconditions of
each member function. That is, if you violate a requires
clause the dlib::fatal_error exception is thrown.
</description>
</component>
<!-- ************************************************************************* -->
</components>
<!-- ************************************************************************* -->
</doc>