1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <dlib/image_processing/frontal_face_detector.h>
#ifndef DLIB_NO_GUI_SUPPORT
#include <dlib/gui_widgets.h>
#endif
#include "simple_object_detector.h"
using namespace dlib;
using namespace std;
using namespace boost::python;
template <typename T>
void resize(T& v, unsigned long n) { v.resize(n); }
// ----------------------------------------------------------------------------------------
long left(const rectangle& r) { return r.left(); }
long top(const rectangle& r) { return r.top(); }
long right(const rectangle& r) { return r.right(); }
long bottom(const rectangle& r) { return r.bottom(); }
long width(const rectangle& r) { return r.width(); }
long height(const rectangle& r) { return r.height(); }
string print_rectangle_str(const rectangle& r)
{
std::ostringstream sout;
sout << r;
return sout.str();
}
string print_rectangle_repr(const rectangle& r)
{
std::ostringstream sout;
sout << "rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")";
return sout.str();
}
// ----------------------------------------------------------------------------------------
string print_rgb_pixel_str(const rgb_pixel& p)
{
std::ostringstream sout;
sout << "red: "<< (int)p.red
<< ", green: "<< (int)p.green
<< ", blue: "<< (int)p.blue;
return sout.str();
}
string print_rgb_pixel_repr(const rgb_pixel& p)
{
std::ostringstream sout;
sout << "rgb_pixel(" << p.red << "," << p.green << "," << p.blue << ")";
return sout.str();
}
// ----------------------------------------------------------------------------------------
std::vector<rectangle> run_detector (
frontal_face_detector& detector,
object img,
const unsigned int upsampling_amount
)
{
pyramid_down<2> pyr;
if (is_gray_python_image(img))
{
array2d<unsigned char> temp;
if (upsampling_amount == 0)
{
return detector(numpy_gray_image(img));
}
else
{
pyramid_up(numpy_gray_image(img), temp, pyr);
unsigned int levels = upsampling_amount-1;
while (levels > 0)
{
levels--;
pyramid_up(temp);
}
std::vector<rectangle> res = detector(temp);
for (unsigned long i = 0; i < res.size(); ++i)
res[i] = pyr.rect_down(res[i], upsampling_amount);
return res;
}
}
else if (is_rgb_python_image(img))
{
array2d<rgb_pixel> temp;
if (upsampling_amount == 0)
{
return detector(numpy_rgb_image(img));
}
else
{
pyramid_up(numpy_rgb_image(img), temp, pyr);
unsigned int levels = upsampling_amount-1;
while (levels > 0)
{
levels--;
pyramid_up(temp);
}
std::vector<rectangle> res = detector(temp);
for (unsigned long i = 0; i < res.size(); ++i)
res[i] = pyr.rect_down(res[i], upsampling_amount);
return res;
}
}
else
{
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
}
// ----------------------------------------------------------------------------------------
struct simple_object_detector_py
{
simple_object_detector detector;
unsigned int upsampling_amount;
std::vector<rectangle> run_detector1 (object img, const unsigned int upsampling_amount_)
{ return ::run_detector(detector, img, upsampling_amount_); }
std::vector<rectangle> run_detector2 (object img)
{ return ::run_detector(detector, img, upsampling_amount); }
};
void serialize (const simple_object_detector_py& item, std::ostream& out)
{
int version = 1;
serialize(item.detector, out);
serialize(version, out);
serialize(item.upsampling_amount, out);
}
void deserialize (simple_object_detector_py& item, std::istream& in)
{
int version = 0;
deserialize(item.detector, in);
deserialize(version, in);
if (version != 1)
throw dlib::serialization_error("Unexpected version found while deserializing a simple_object_detector.");
deserialize(item.upsampling_amount, in);
}
// ----------------------------------------------------------------------------------------
#ifndef DLIB_NO_GUI_SUPPORT
void image_window_set_image_fhog_detector (
image_window& win,
const frontal_face_detector& det
)
{
win.set_image(draw_fhog(det));
}
void image_window_set_image_simple_detector (
image_window& win,
const simple_object_detector_py& det
)
{
win.set_image(draw_fhog(det.detector));
}
void image_window_set_image (
image_window& win,
object img
)
{
if (is_gray_python_image(img))
return win.set_image(numpy_gray_image(img));
else if (is_rgb_python_image(img))
return win.set_image(numpy_rgb_image(img));
else
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
void add_red_overlay_rects (
image_window& win,
const std::vector<rectangle>& rects
)
{
win.add_overlay(rects, rgb_pixel(255,0,0));
}
// ----------------------------------------------------------------------------------------
boost::shared_ptr<image_window> make_image_window_from_image(object img)
{
boost::shared_ptr<image_window> win(new image_window);
image_window_set_image(*win, img);
return win;
}
boost::shared_ptr<image_window> make_image_window_from_image_and_title(object img, const string& title)
{
boost::shared_ptr<image_window> win(new image_window);
image_window_set_image(*win, img);
win->set_title(title);
return win;
}
#endif
// ----------------------------------------------------------------------------------------
string print_simple_test_results(const simple_test_results& r)
{
std::ostringstream sout;
sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
return sout.str();
}
inline void train_simple_object_detector_on_images_py (
const object& pyimages,
const object& pyboxes,
const std::string& detector_output_filename,
const simple_object_detector_training_options& options
)
{
const unsigned long num_images = len(pyimages);
if (num_images != len(pyboxes))
throw dlib::error("The length of the boxes list must match the length of the images list.");
// We never have any ignore boxes for this version of the API.
std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
dlib::array<array2d<rgb_pixel> > images(num_images);
// Now copy the data into dlib based objects so we can call the trainer.
for (unsigned long i = 0; i < num_images; ++i)
{
const unsigned long num_boxes = len(pyboxes[i]);
for (unsigned long j = 0; j < num_boxes; ++j)
boxes[i].push_back(extract<rectangle>(pyboxes[i][j]));
object img = pyimages[i];
if (is_gray_python_image(img))
assign_image(images[i], numpy_gray_image(img));
else if (is_rgb_python_image(img))
assign_image(images[i], numpy_rgb_image(img));
else
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
train_simple_object_detector_on_images("", images, boxes, ignore, detector_output_filename, options);
}
// ----------------------------------------------------------------------------------------
void bind_object_detection()
{
using boost::python::arg;
class_<simple_object_detector_training_options>("simple_object_detector_training_options",
"This object is a container for the options to the train_simple_object_detector() routine.")
.add_property("be_verbose", &simple_object_detector_training_options::be_verbose,
&simple_object_detector_training_options::be_verbose,
"If true, train_simple_object_detector() will print out a lot of information to the screen while training."
)
.add_property("add_left_right_image_flips", &simple_object_detector_training_options::add_left_right_image_flips,
&simple_object_detector_training_options::add_left_right_image_flips,
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
images. This doubles the size of the training dataset."
/*!
if true, train_simple_object_detector() will assume the objects are
left/right symmetric and add in left right flips of the training
images. This doubles the size of the training dataset.
!*/
)
.add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size,
&simple_object_detector_training_options::detection_window_size,
"The sliding window used will have about this many pixels inside it.")
.add_property("C", &simple_object_detector_training_options::C,
&simple_object_detector_training_options::C,
"C is the usual SVM C regularization parameter. So it is passed to \n\
structural_object_detection_trainer::set_c(). Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting. Therefore, you must determine the proper setting of \n\
this parameter experimentally."
/*!
C is the usual SVM C regularization parameter. So it is passed to
structural_object_detection_trainer::set_c(). Larger values of C
will encourage the trainer to fit the data better but might lead to
overfitting. Therefore, you must determine the proper setting of
this parameter experimentally.
!*/
)
.add_property("epsilon", &simple_object_detector_training_options::epsilon,
&simple_object_detector_training_options::epsilon,
"epsilon is the stopping epsilon. Smaller values make the trainer's \n\
solver more accurate but might take longer to train."
/*!
epsilon is the stopping epsilon. Smaller values make the trainer's
solver more accurate but might take longer to train.
!*/
)
.add_property("num_threads", &simple_object_detector_training_options::num_threads,
&simple_object_detector_training_options::num_threads,
"train_simple_object_detector() will use this many threads of \n\
execution. Set this to the number of CPU cores on your machine to \n\
obtain the fastest training speed."
/*!
train_simple_object_detector() will use this many threads of
execution. Set this to the number of CPU cores on your machine to
obtain the fastest training speed.
!*/
);
class_<simple_test_results>("simple_test_results")
.add_property("precision", &simple_test_results::precision)
.add_property("recall", &simple_test_results::recall)
.add_property("average_precision", &simple_test_results::average_precision)
.def("__str__", &::print_simple_test_results);
{
typedef rectangle type;
class_<type>("rectangle", "This object represents a rectangular area of an image.")
.def(init<long,long,long,long>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
.def("left", &::left)
.def("top", &::top)
.def("right", &::right)
.def("bottom", &::bottom)
.def("width", &::width)
.def("height", &::height)
.def("__str__", &::print_rectangle_str)
.def("__repr__", &::print_rectangle_repr)
.def_pickle(serialize_pickle<type>());
}
def("get_frontal_face_detector", get_frontal_face_detector,
"Returns the default face detector");
def("train_simple_object_detector", train_simple_object_detector,
(arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
- options.C > 0 \n\
ensures \n\
- Uses the structural_object_detection_trainer to train a \n\
simple_object_detector based on the labeled images in the XML file \n\
dataset_filename. This function assumes the file dataset_filename is in the \n\
XML format produced by dlib's save_image_dataset_metadata() routine. \n\
- This function will apply a reasonable set of default parameters and \n\
preprocessing techniques to the training procedure for simple_object_detector \n\
objects. So the point of this function is to provide you with a very easy \n\
way to train a basic object detector. \n\
- The trained object detector is serialized to the file detector_output_filename."
/*!
requires
- options.C > 0
ensures
- Uses the structural_object_detection_trainer to train a
simple_object_detector based on the labeled images in the XML file
dataset_filename. This function assumes the file dataset_filename is in the
XML format produced by dlib's save_image_dataset_metadata() routine.
- This function will apply a reasonable set of default parameters and
preprocessing techniques to the training procedure for simple_object_detector
objects. So the point of this function is to provide you with a very easy
way to train a basic object detector.
- The trained object detector is serialized to the file detector_output_filename.
!*/
);
def("train_simple_object_detector", train_simple_object_detector_on_images_py,
(arg("images"), arg("boxes"), arg("detector_output_filename"), arg("options")),
"requires \n\
- options.C > 0 \n\
- len(images) == len(boxes) \n\
- images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
- boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
- Uses the structural_object_detection_trainer to train a \n\
simple_object_detector based on the labeled images and bounding boxes. \n\
- This function will apply a reasonable set of default parameters and \n\
preprocessing techniques to the training procedure for simple_object_detector \n\
objects. So the point of this function is to provide you with a very easy \n\
way to train a basic object detector. \n\
- The trained object detector is serialized to the file detector_output_filename."
/*!
requires
- options.C > 0
- len(images) == len(boxes)
- images should be a list of numpy matrices that represent images, either RGB or grayscale.
- boxes should be a dlib.rectangles object (i.e. an array of rectangles).
- boxes should be a list of lists of dlib.rectangle object.
ensures
- Uses the structural_object_detection_trainer to train a
simple_object_detector based on the labeled images and bounding boxes.
- This function will apply a reasonable set of default parameters and
preprocessing techniques to the training procedure for simple_object_detector
objects. So the point of this function is to provide you with a very easy
way to train a basic object detector.
- The trained object detector is serialized to the file detector_output_filename.
!*/
);
def("test_simple_object_detector", test_simple_object_detector,
(arg("dataset_filename"), arg("detector_filename")),
"ensures \n\
- Loads an image dataset from dataset_filename. We assume dataset_filename is \n\
a file using the XML format written by save_image_dataset_metadata(). \n\
- Loads a simple_object_detector from the file detector_filename. This means \n\
detector_filename should be a file produced by the train_simple_object_detector() \n\
routine. \n\
- This function tests the detector against the dataset and returns the \n\
precision, recall, and average precision of the detector. In fact, The \n\
return value of this function is identical to that of dlib's \n\
test_object_detection_function() routine. Therefore, see the documentation \n\
for test_object_detection_function() for a detailed definition of these \n\
metrics. "
/*!
ensures
- Loads an image dataset from dataset_filename. We assume dataset_filename is
a file using the XML format written by save_image_dataset_metadata().
- Loads a simple_object_detector from the file detector_filename. This means
detector_filename should be a file produced by the train_simple_object_detector()
routine.
- This function tests the detector against the dataset and returns the
precision, recall, and average precision of the detector. In fact, The
return value of this function is identical to that of dlib's
test_object_detection_function() routine. Therefore, see the documentation
for test_object_detection_function() for a detailed definition of these
metrics.
!*/
);
{
typedef simple_object_detector_py type;
class_<type>("simple_object_detector",
"This object represents a sliding window histogram-of-oriented-gradients based object detector.")
.def("__init__", make_constructor(&load_object_from_file<type>),
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine."
/*!
Loads a simple_object_detector from a file that contains the output of the
train_simple_object_detector() routine.
!*/)
.def("__call__", &type::run_detector1, (arg("image"), arg("upsample_num_times")),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
- upsample_num_times >= 0 \n\
ensures \n\
- This function runs the object detector on the input image and returns \n\
a list of detections. \n\
- Upsamples the image upsample_num_times before running the basic \n\
detector. If you don't know how many times you want to upsample then \n\
don't provide a value for upsample_num_times and an appropriate \n\
default will be used."
/*!
requires
- image is a numpy ndarray containing either an 8bit grayscale or RGB
image.
- upsample_num_times >= 0
ensures
- This function runs the object detector on the input image and returns
a list of detections.
- Upsamples the image upsample_num_times before running the basic
detector. If you don't know how many times you want to upsample then
don't provide a value for upsample_num_times and an appropriate
default will be used.
!*/
)
.def("__call__", &type::run_detector2, (arg("image")),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
ensures \n\
- This function runs the object detector on the input image and returns \n\
a list of detections. "
/*!
requires
- image is a numpy ndarray containing either an 8bit grayscale or RGB
image.
ensures
- This function runs the object detector on the input image and returns
a list of detections.
!*/
)
.def_pickle(serialize_pickle<type>());
}
{
typedef frontal_face_detector type;
class_<type>("fhog_object_detector",
"This object represents a sliding window histogram-of-oriented-gradients based object detector.")
.def("__init__", make_constructor(&load_object_from_file<type>),
"Loads a fhog_object_detector from a file that contains a serialized \n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>> object. " )
.def("__call__", &::run_detector, (arg("image"), arg("upsample_num_times")=0),
"requires \n\
- image is a numpy ndarray containing either an 8bit \n\
grayscale or RGB image. \n\
- upsample_num_times >= 0 \n\
ensures \n\
- This function runs the object detector on the input image \n\
and returns a list of detections. \n\
- You can detect smaller objects by upsampling the image \n\
before running the detector. This function can do that \n\
for you automatically if you set upsample_num_times to a \n\
non-zero value. Specifically, the image is doubled in \n\
size upsample_num_times times. "
/*!
requires
- image is a numpy ndarray containing either an 8bit
grayscale or RGB image.
- upsample_num_times >= 0
ensures
- This function runs the object detector on the input image
and returns a list of detections.
- You can detect smaller objects by upsampling the image
before running the detector. This function can do that
for you automatically if you set upsample_num_times to a
non-zero value. Specifically, the image is doubled in
size upsample_num_times times.
!*/
)
.def_pickle(serialize_pickle<type>());
}
#ifndef DLIB_NO_GUI_SUPPORT
{
typedef image_window type;
typedef void (image_window::*set_title_funct)(const std::string&);
typedef void (image_window::*add_overlay_funct)(const std::vector<rectangle>& r, rgb_pixel p);
class_<type,boost::noncopyable>("image_window",
"This is a GUI window capable of showing images on the screen.")
.def("__init__", make_constructor(&make_image_window_from_image),
"Create an image window that displays the given numpy image.")
.def("__init__", make_constructor(&make_image_window_from_image_and_title),
"Create an image window that displays the given numpy image and also has the given title.")
.def("set_image", image_window_set_image, arg("image"),
"Make the image_window display the given image.")
.def("set_image", image_window_set_image_fhog_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_image", image_window_set_image_simple_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_title", (set_title_funct)&type::set_title, arg("title"),
"Set the title of the window to the given value.")
.def("clear_overlay", &type::clear_overlay, "Remove all overlays from the image_window.")
.def("add_overlay", (add_overlay_funct)&type::add_overlay<rgb_pixel>, (arg("rectangles"), arg("color")),
"Add a list of rectangles to the image_window. They will be displayed as boxes of the given color.")
.def("add_overlay", add_red_overlay_rects,
"Add a list of rectangles to the image_window. They will be displayed as red boxes.")
.def("wait_until_closed", &type::wait_until_closed,
"This function blocks until the window is closed.");
}
#endif
{
typedef std::vector<rectangle> type;
class_<type>("rectangles", "An array of rectangle objects.")
.def(vector_indexing_suite<type>())
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
}
class_<rgb_pixel>("rgb_pixel")
.def(init<unsigned char,unsigned char,unsigned char>( (arg("red"),arg("green"),arg("blue")) ))
.def("__str__", &print_rgb_pixel_str)
.def("__repr__", &print_rgb_pixel_repr)
.add_property("red", &rgb_pixel::red)
.add_property("green", &rgb_pixel::green)
.add_property("blue", &rgb_pixel::blue);
}
// ----------------------------------------------------------------------------------------