Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
023e1398
Commit
023e1398
authored
Jun 28, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
e44da577
c68af9dc
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
499 additions
and
144 deletions
+499
-144
core.h
dlib/dnn/core.h
+1
-1
cpu_dlib.cpp
dlib/dnn/cpu_dlib.cpp
+44
-23
cpu_dlib.h
dlib/dnn/cpu_dlib.h
+33
-8
cudnn_dlibapi.cpp
dlib/dnn/cudnn_dlibapi.cpp
+25
-17
cudnn_dlibapi.h
dlib/dnn/cudnn_dlibapi.h
+14
-62
layers.h
dlib/dnn/layers.h
+0
-0
layers_abstract.h
dlib/dnn/layers_abstract.h
+215
-0
tensor_tools.h
dlib/dnn/tensor_tools.h
+108
-27
dnn.cpp
dlib/test/dnn.cpp
+59
-6
No files found.
dlib/dnn/core.h
View file @
023e1398
...
...
@@ -3199,7 +3199,7 @@ namespace dlib
}
}
}
// end for (int iter = 0; iter <
5
; ++iter)
}
// end for (int iter = 0; iter <
10
; ++iter)
if
(
rs_params
.
mean
()
>
0
.
003
)
{
...
...
dlib/dnn/cpu_dlib.cpp
View file @
023e1398
...
...
@@ -1740,54 +1740,67 @@ namespace dlib
}
void
tensor_conv
::
operator
()
(
const
bool
add_to_output
,
resizable_tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
,
int
stride_y
,
int
stride_x
,
int
padding_y
,
int
padding_x
const
tensor
&
filters
)
{
DLIB_CASSERT
(
last_stride_y
>
0
&&
last_stride_x
>
0
,
"You must call setup() before calling this function."
);
output
.
set_size
(
data
.
num_samples
(),
filters
.
num_samples
(),
1
+
(
data
.
nr
()
+
2
*
last_padding_y
-
filters
.
nr
())
/
last_stride_y
,
1
+
(
data
.
nc
()
+
2
*
last_padding_x
-
filters
.
nc
())
/
last_stride_x
);
(
*
this
)(
add_to_output
,
static_cast
<
tensor
&>
(
output
),
data
,
filters
);
}
void
tensor_conv
::
operator
()
(
const
bool
add_to_output
,
tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
)
{
DLIB_CASSERT
(
is_same_object
(
output
,
data
)
==
false
);
DLIB_CASSERT
(
is_same_object
(
output
,
filters
)
==
false
);
DLIB_CASSERT
(
filters
.
k
()
==
data
.
k
());
DLIB_CASSERT
(
stride_y
>
0
&&
stride_x
>
0
);
DLIB_CASSERT
(
0
<=
padding_y
&&
padding_y
<
filters
.
nr
());
DLIB_CASSERT
(
0
<=
padding_x
&&
padding_x
<
filters
.
nc
());
DLIB_CASSERT
(
filters
.
nr
()
<=
data
.
nr
()
+
2
*
padding_y
,
DLIB_CASSERT
(
last_stride_y
>
0
&&
last_stride_x
>
0
,
"You must call setup() before calling this function."
);
DLIB_CASSERT
(
filters
.
nr
()
<=
data
.
nr
()
+
2
*
last_padding_y
,
"Filter windows must be small enough to fit into the padded image."
);
DLIB_CASSERT
(
filters
.
nc
()
<=
data
.
nc
()
+
2
*
padding_x
,
DLIB_CASSERT
(
filters
.
nc
()
<=
data
.
nc
()
+
2
*
last_
padding_x
,
"Filter windows must be small enough to fit into the padded image."
);
output
.
set_size
(
data
.
num_samples
(),
filters
.
num_samples
(),
1
+
(
data
.
nr
()
+
2
*
padding_y
-
filters
.
nr
())
/
stride_y
,
1
+
(
data
.
nc
()
+
2
*
padding_x
-
filters
.
nc
())
/
stride_x
);
DLIB_CASSERT
(
output
.
num_samples
()
==
data
.
num_samples
());
DLIB_CASSERT
(
output
.
k
()
==
filters
.
num_samples
());
DLIB_CASSERT
(
output
.
nr
()
==
1
+
(
data
.
nr
()
+
2
*
last_padding_y
-
filters
.
nr
())
/
last_stride_y
);
DLIB_CASSERT
(
output
.
nc
()
==
1
+
(
data
.
nc
()
+
2
*
last_padding_x
-
filters
.
nc
())
/
last_stride_x
);
matrix
<
float
>
temp
;
for
(
long
n
=
0
;
n
<
data
.
num_samples
();
++
n
)
{
img2col
(
temp
,
data
,
n
,
filters
.
nr
(),
filters
.
nc
(),
stride_y
,
stride_x
,
padding_y
,
padding_x
);
output
.
set_sample
(
n
,
mat
(
filters
)
*
trans
(
temp
));
}
img2col
(
temp
,
data
,
n
,
filters
.
nr
(),
filters
.
nc
(),
last_stride_y
,
last_stride_x
,
last_padding_y
,
last_padding_x
);
last_stride_y
=
stride_y
;
last_stride_x
=
stride_x
;
last_padding_y
=
padding_y
;
last_padding_x
=
padding_x
;
if
(
add_to_output
)
output
.
add_to_sample
(
n
,
mat
(
filters
)
*
trans
(
temp
));
else
output
.
set_sample
(
n
,
mat
(
filters
)
*
trans
(
temp
));
}
}
// ------------------------------------------------------------------------------------
void
tensor_conv
::
get_gradient_for_data
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
filters
,
tensor
&
data_gradient
)
{
matrix
<
float
>
temp
;
if
(
!
add_to_output
)
data_gradient
=
0
;
for
(
long
n
=
0
;
n
<
gradient_input
.
num_samples
();
++
n
)
{
auto
gi
=
mat
(
gradient_input
.
host
()
+
gradient_input
.
k
()
*
gradient_input
.
nr
()
*
gradient_input
.
nc
()
*
n
,
...
...
@@ -1804,6 +1817,7 @@ namespace dlib
void
tensor_conv
::
get_gradient_for_filters
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
data
,
tensor
&
filters_gradient
...
...
@@ -1819,12 +1833,19 @@ namespace dlib
img2col
(
temp
,
data
,
n
,
filters_gradient
.
nr
(),
filters_gradient
.
nc
(),
last_stride_y
,
last_stride_x
,
last_padding_y
,
last_padding_x
);
if
(
n
==
0
)
filters_gradient
=
gi
*
temp
;
{
if
(
add_to_output
)
filters_gradient
+=
gi
*
temp
;
else
filters_gradient
=
gi
*
temp
;
}
else
{
filters_gradient
+=
gi
*
temp
;
}
}
}
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
void
copy_tensor
(
tensor
&
dest
,
size_t
dest_k_offset
,
...
...
dlib/dnn/cpu_dlib.h
View file @
023e1398
...
...
@@ -368,23 +368,48 @@ namespace dlib
void
clear
(
)
{}
void
operator
()
(
resizable_tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
,
void
setup
(
const
tensor
&
data
,
/* not used but required for interface */
const
tensor
&
filters
,
/* not used but required for interface */
int
stride_y
,
int
stride_x
,
int
padding_y
,
int
padding_x
)
{
(
void
)
data
;
/* silence compiler */
DLIB_CASSERT
(
stride_y
>
0
&&
stride_x
>
0
);
DLIB_CASSERT
(
0
<=
padding_y
&&
padding_y
<
filters
.
nr
());
DLIB_CASSERT
(
0
<=
padding_x
&&
padding_x
<
filters
.
nc
());
last_stride_y
=
stride_y
;
last_stride_x
=
stride_x
;
last_padding_y
=
padding_y
;
last_padding_x
=
padding_x
;
}
void
operator
()
(
const
bool
add_to_output
,
resizable_tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
);
void
operator
()
(
const
bool
add_to_output
,
tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
);
void
get_gradient_for_data
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
filters
,
tensor
&
data_gradient
);
void
get_gradient_for_filters
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
data
,
tensor
&
filters_gradient
...
...
@@ -392,10 +417,10 @@ namespace dlib
private
:
long
last_stride_y
;
long
last_stride_x
;
long
last_padding_y
;
long
last_padding_x
;
long
last_stride_y
=
0
;
long
last_stride_x
=
0
;
long
last_padding_y
=
0
;
long
last_padding_x
=
0
;
};
// -----------------------------------------------------------------------------------
...
...
dlib/dnn/cudnn_dlibapi.cpp
View file @
023e1398
...
...
@@ -951,19 +951,29 @@ namespace dlib
}
void
tensor_conv
::
operator
()
(
const
bool
add_to_output
,
resizable_tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
,
int
stride_y
,
int
stride_x
,
int
padding_y
,
int
padding_x
const
tensor
&
filters
)
{
DLIB_CASSERT
(
stride_y
>
0
&&
stride_x
>
0
,
"You must call setup() before calling this function"
);
output
.
set_size
(
out_num_samples
,
out_k
,
out_nr
,
out_nc
);
(
*
this
)(
add_to_output
,
static_cast
<
tensor
&>
(
output
),
data
,
filters
);
}
void
tensor_conv
::
operator
()
(
const
bool
add_to_output
,
tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
)
{
DLIB_CASSERT
(
is_same_object
(
output
,
data
)
==
false
);
DLIB_CASSERT
(
is_same_object
(
output
,
filters
)
==
false
);
DLIB_CASSERT
(
filters
.
k
()
==
data
.
k
());
DLIB_CASSERT
(
stride_y
>
0
&&
stride_x
>
0
);
DLIB_CASSERT
(
stride_y
>
0
&&
stride_x
>
0
,
"You must call setup() before calling this function"
);
DLIB_CASSERT
(
filters
.
nc
()
<=
data
.
nc
()
+
2
*
padding_x
,
"Filter windows must be small enough to fit into the padded image."
<<
"
\n\t
filters.nc(): "
<<
filters
.
nc
()
...
...
@@ -978,19 +988,15 @@ namespace dlib
);
setup
(
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
output
.
set_size
(
out_num_samples
,
out_k
,
out_nr
,
out_nc
);
DLIB_ASSERT
(
output
.
num_samples
()
==
data
.
num_samples
(),
out_num_samples
<<
" "
<<
data
.
num_samples
());
DLIB_ASSERT
(
output
.
k
()
==
filters
.
num_samples
());
DLIB_ASSERT
(
output
.
nr
()
==
1
+
(
data
.
nr
()
+
2
*
padding_y
-
filters
.
nr
())
/
stride_y
);
DLIB_ASSERT
(
output
.
nc
()
==
1
+
(
data
.
nc
()
+
2
*
padding_x
-
filters
.
nc
())
/
stride_x
);
DLIB_CASSERT
(
output
.
num_samples
()
==
data
.
num_samples
(),
out_num_samples
<<
" "
<<
data
.
num_samples
());
DLIB_CASSERT
(
output
.
k
()
==
filters
.
num_samples
());
DLIB_CASSERT
(
output
.
nr
()
==
1
+
(
data
.
nr
()
+
2
*
padding_y
-
filters
.
nr
())
/
stride_y
);
DLIB_CASSERT
(
output
.
nc
()
==
1
+
(
data
.
nc
()
+
2
*
padding_x
-
filters
.
nc
())
/
stride_x
);
const
float
alpha
=
1
;
const
float
beta
=
0
;
const
float
beta
=
add_to_output
?
1
:
0
;
CHECK_CUDNN
(
cudnnConvolutionForward
(
context
(),
&
alpha
,
...
...
@@ -1008,13 +1014,14 @@ namespace dlib
}
void
tensor_conv
::
get_gradient_for_data
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
filters
,
tensor
&
data_gradient
)
{
const
float
alpha
=
1
;
const
float
beta
=
1
;
const
float
beta
=
add_to_output
?
1
:
0
;
CHECK_CUDNN
(
cudnnConvolutionBackwardData
(
context
(),
...
...
@@ -1034,13 +1041,14 @@ namespace dlib
void
tensor_conv
::
get_gradient_for_filters
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
data
,
tensor
&
filters_gradient
)
{
const
float
alpha
=
1
;
const
float
beta
=
0
;
const
float
beta
=
add_to_output
?
1
:
0
;
CHECK_CUDNN
(
cudnnConvolutionBackwardFilter
(
context
(),
&
alpha
,
descriptor
(
data
),
...
...
dlib/dnn/cudnn_dlibapi.h
View file @
023e1398
...
...
@@ -203,76 +203,34 @@ namespace dlib
);
void
operator
()
(
const
bool
add_to_output
,
tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
);
void
operator
()
(
const
bool
add_to_output
,
resizable_tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
,
int
stride_y
,
int
stride_x
,
int
padding_y
,
int
padding_x
const
tensor
&
filters
);
/*!
requires
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < filters.nr()
- 0 <= padding_x < filters.nc()
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
ensures
- convolves filters over data.
- filters contains filters.num_samples() filters.
- #output.num_samples() == data.num_samples()
- #output.k() == filters.num_samples()
- #output.nr() == 1+(data.nr()-filters.nr()%2)/stride_y
- #output.nc() == 1+(data.nc()-filters.nc()%2)/stride_x
!*/
void
get_gradient_for_data
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
filters
,
tensor
&
data_gradient
);
/*!
requires
- filters has the same dimensions as the filters object give to the
last call to operator().
- data_gradient has the same dimensions as the data object give to the
last call to operator().
- gradient_input has the same dimensions as the output of operator().
- is_same_object(data_gradient,filters) == false
- is_same_object(data_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters).
- let f(data,filters) == dot(OUT, gradient_input)
- This function finds the gradient of f() with respect to data
and adds this gradient to data_gradient.
!*/
void
get_gradient_for_filters
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
data
,
tensor
&
filters_gradient
);
/*!
requires
- filters_gradient has the same dimensions as the filters object give
to the last call to operator().
- data has the same dimensions as the data object give to the last call
to operator().
- gradient_input has the same dimensions as the output of operator().
- is_same_object(filters_gradient,data) == false
- is_same_object(filters_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters).
- let f(data,filters) == dot(OUT, gradient_input)
- This function finds the gradient of f() with respect to filters
and assigns this gradient to filters_gradient.
!*/
private
:
void
setup
(
void
setup
(
const
tensor
&
data
,
const
tensor
&
filters
,
int
stride_y
,
...
...
@@ -280,14 +238,8 @@ namespace dlib
int
padding_y
,
int
padding_x
);
/*!
requires
- filters.k() == data.k()
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < filters.nr()
- 0 <= padding_x < filters.nc()
!*/
private
:
// These variables record the type of data given to the last call to setup().
int
stride_y
;
...
...
dlib/dnn/layers.h
View file @
023e1398
This diff is collapsed.
Click to expand it.
dlib/dnn/layers_abstract.h
View file @
023e1398
...
...
@@ -840,6 +840,221 @@ namespace dlib
>
using
con
=
add_layer
<
con_
<
num_filters
,
nr
,
nc
,
stride_y
,
stride_x
>
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
long
_num_filters
,
long
_nr
,
long
_nc
,
int
_stride_y
,
int
_stride_x
,
int
_padding_y
=
_stride_y
!=
1
?
0
:
_nr
/
2
,
int
_padding_x
=
_stride_x
!=
1
?
0
:
_nc
/
2
>
class
cont_
{
/*!
REQUIREMENTS ON TEMPLATE ARGUMENTS
All of them must be > 0.
Also, we require that:
- 0 <= _padding_y && _padding_y < _nr
- 0 <= _padding_x && _padding_x < _nc
WHAT THIS OBJECT REPRESENTS
This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
defined above. In particular, it defines a transposed convolution layer
that takes an input tensor and transpose convolves (sometimes called
"deconvolution") it with a set of filters and then outputs the results.
This is essentially a convolutional layer that allows fractional strides.
Therefore, you can make output tensors that are larger than the input
tensors using this layer type.
The dimensions of the tensors output by this layer are as follows (letting
IN be the input tensor and OUT the output tensor):
- OUT.num_samples() == IN.num_samples()
- OUT.k() == num_filters()
- OUT.nr() == stride_y()*(IN.nr()-1) + nr() - 2*padding_y()
- OUT.nc() == stride_x()*(IN.nc()-1) + nc() - 2*padding_x()
!*/
public
:
cont_
(
);
/*!
ensures
- #num_filters() == _num_filters
- #nr() == _nr
- #nc() == _nc
- #stride_y() == _stride_y
- #stride_x() == _stride_x
- #padding_y() == _padding_y
- #padding_x() == _padding_x
- #get_learning_rate_multiplier() == 1
- #get_weight_decay_multiplier() == 1
- #get_bias_learning_rate_multiplier() == 1
- #get_bias_weight_decay_multiplier() == 0
!*/
long
num_filters
(
)
const
;
/*!
ensures
- returns the number of filters contained in this layer. The k dimension
of the output tensors produced by this layer will be equal to the number
of filters.
!*/
long
nr
(
)
const
;
/*!
ensures
- returns the number of rows in the filters in this layer.
!*/
long
nc
(
)
const
;
/*!
ensures
- returns the number of columns in the filters in this layer.
!*/
long
stride_y
(
)
const
;
/*!
ensures
- returns the vertical stride used when convolving the filters over an
image. That is, each filter will be moved 1.0/stride_y() pixels down at
a time when it moves over the image.
!*/
long
stride_x
(
)
const
;
/*!
ensures
- returns the horizontal stride used when convolving the filters over an
image. That is, each filter will be moved 1.0/stride_x() pixels right at
a time when it moves over the image.
!*/
long
padding_y
(
)
const
;
/*!
ensures
- returns the number of pixels of zero padding added to the top and bottom
sides of the image.
!*/
long
padding_x
(
)
const
;
/*!
ensures
- returns the number of pixels of zero padding added to the left and right
sides of the image.
!*/
double
get_learning_rate_multiplier
(
)
const
;
/*!
ensures
- returns a multiplier number. The interpretation is that this object is
requesting that the learning rate used to optimize its parameters be
multiplied by get_learning_rate_multiplier().
!*/
double
get_weight_decay_multiplier
(
)
const
;
/*!
ensures
- returns a multiplier number. The interpretation is that this object is
requesting that the weight decay used to optimize its parameters be
multiplied by get_weight_decay_multiplier().
!*/
void
set_learning_rate_multiplier
(
double
val
);
/*!
requires
- val >= 0
ensures
- #get_learning_rate_multiplier() == val
!*/
void
set_weight_decay_multiplier
(
double
val
);
/*!
requires
- val >= 0
ensures
- #get_weight_decay_multiplier() == val
!*/
double
get_bias_learning_rate_multiplier
(
)
const
;
/*!
ensures
- returns a multiplier number. The interpretation is that this object is
requesting that the learning rate used to optimize its bias parameters be
multiplied by get_learning_rate_multiplier()*get_bias_learning_rate_multiplier().
!*/
double
get_bias_weight_decay_multiplier
(
)
const
;
/*!
ensures
- returns a multiplier number. The interpretation is that this object is
requesting that the weight decay used to optimize its bias parameters be
multiplied by get_weight_decay_multiplier()*get_bias_weight_decay_multiplier().
!*/
void
set_bias_learning_rate_multiplier
(
double
val
);
/*!
requires
- val >= 0
ensures
- #get_bias_learning_rate_multiplier() == val
!*/
void
set_bias_weight_decay_multiplier
(
double
val
);
/*!
requires
- val >= 0
ensures
- #get_bias_weight_decay_multiplier() == val
!*/
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
point
map_input_to_output
(
point
p
)
const
;
point
map_output_to_input
(
point
p
)
const
;
const
tensor
&
get_layer_params
()
const
;
tensor
&
get_layer_params
();
/*!
These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
!*/
};
template
<
long
num_filters
,
long
nr
,
long
nc
,
int
stride_y
,
int
stride_x
,
typename
SUBNET
>
using
cont
=
add_layer
<
cont_
<
num_filters
,
nr
,
nc
,
stride_y
,
stride_x
>
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
dropout_
...
...
dlib/dnn/tensor_tools.h
View file @
023e1398
...
...
@@ -877,27 +877,50 @@ namespace dlib { namespace tt
)
{
impl
.
clear
();
}
void
operator
()
(
const
bool
add_to_output
,
tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
)
{
impl
(
add_to_output
,
output
,
data
,
filters
);
}
/*!
requires
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data, filters, stride_y, stride_x, padding_y, padding_x);
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
- filters.k() == data.k()
- filters.nr() <= src.nr() + 2*padding_y
- filters.nc() <= src.nc() + 2*padding_x
- #output.num_samples() == data.num_samples()
- #output.k() == filters.num_samples()
- #output.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- #output.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
ensures
- Convolves filters over data. If add_to_output==true then we add the
results to output, otherwise we assign to output, overwriting the
previous values in output.
- filters contains filters.num_samples() filters.
!*/
void
operator
()
(
const
bool
add_to_output
,
resizable_tensor
&
output
,
const
tensor
&
data
,
const
tensor
&
filters
,
int
stride_y
,
int
stride_x
,
int
padding_y
,
int
padding_x
)
{
impl
(
output
,
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
}
const
tensor
&
filters
)
{
impl
(
add_to_output
,
output
,
data
,
filters
);
}
/*!
requires
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < filters.nr()
- 0 <= padding_x < filters.nc()
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data, filters, stride_y, stride_x, padding_y, padding_x);
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
- filters.k() == data.k()
- filters.nr() <= src.nr() + 2*padding_y
- filters.nc() <= src.nc() + 2*padding_x
ensures
- convolves filters over data.
- Convolves filters over data. If add_to_output==true then we add the
results to output, otherwise we assign to output, overwriting the
previous values in output.
- filters contains filters.num_samples() filters.
- #output.num_samples() == data.num_samples()
- #output.k() == filters.num_samples()
...
...
@@ -906,47 +929,105 @@ namespace dlib { namespace tt
!*/
void
get_gradient_for_data
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
filters
,
tensor
&
data_gradient
)
{
impl
.
get_gradient_for_data
(
gradient_input
,
filters
,
data_gradient
);
}
)
{
impl
.
get_gradient_for_data
(
add_to_output
,
gradient_input
,
filters
,
data_gradient
);
}
/*!
requires
- filters has the same dimensions as the filters object given to the last
call to operator().
- data_gradient has the same dimensions as the data object given to the last
call to operator().
- gradient_input has the same dimensions as the last output of operator().
- One of the following must be true:
- filters has the same dimensions as the filters object given to the
last call to operator(). Also, data_gradient has the same dimensions
as the data object given to the last call to operator().
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data_gradient, filters, stride_y, stride_x, padding_y, padding_x);
- gradient_input has the following dimensions:
- gradient_input.num_samples() == data_gradient.num_samples()
- gradient_input.k() == filters.num_samples()
- gradient_input.nr() == 1+(data_gradient.nr() + 2*padding_y - filters.nr())/stride_y
- gradient_input.nc() == 1+(data_gradient.nc() + 2*padding_x - filters.nc())/stride_x
- NOTE, these dimensions are what you would obtain if gradient_input
has the same dimensions as the last output of operator().
- is_same_object(data_gradient,filters) == false
- is_same_object(data_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters,sx,sy).
- let f(data,filters) == dot(OUT, gradient_input)
- This function finds the gradient of f() with respect to data and adds
this gradient to data_gradient.
- if (add_to_output) then
- This function finds the gradient of f() with respect to data and adds
this gradient to data_gradient.
- else
- This function finds the gradient of f() with respect to data and
assigns this gradient to data_gradient, overwriting the previous
values in data_gradient.
!*/
void
get_gradient_for_filters
(
const
bool
add_to_output
,
const
tensor
&
gradient_input
,
const
tensor
&
data
,
tensor
&
filters_gradient
)
{
impl
.
get_gradient_for_filters
(
gradient_input
,
data
,
filters_gradient
);
}
)
{
impl
.
get_gradient_for_filters
(
add_to_output
,
gradient_input
,
data
,
filters_gradient
);
}
/*!
requires
- filters_gradient has the same dimensions as the filters object given to
the last call to operator().
- data has the same dimensions as the data object given to the last call to
operator().
- gradient_input has the same dimensions as the last output of operator().
- One of the following must be true:
- filters_gradient has the same dimensions as the filters object given
to the last call to operator(). Also, data has the same dimensions
as the data object given to the last call to operator().
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data, filters_gradient, stride_y, stride_x, padding_y, padding_x);
- gradient_input has the following dimensions:
- gradient_input.num_samples() == data.num_samples()
- gradient_input.k() == filters.num_samples()
- gradient_input.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- gradient_input.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
- NOTE, these dimensions are what you would obtain if gradient_input
has the same dimensions as the last output of operator().
- is_same_object(filters_gradient,data) == false
- is_same_object(filters_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters,sx,sy).
- let f(data,filters) == dot(OUT, gradient_input)
- This function finds the gradient of f() with respect to filters and assigns
this gradient to filters_gradient.
- if (add_to_output) then
- This function finds the gradient of f() with respect to filters and
adds this gradient to filters_gradient.
- else
- This function finds the gradient of f() with respect to filters and
assigns this gradient to filters_gradient, overwriting the previous
values in filters_gradient.
!*/
void
setup
(
const
tensor
&
data
,
const
tensor
&
filters
,
int
stride_y
,
int
stride_x
,
int
padding_y
,
int
padding_x
)
{
impl
.
setup
(
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
}
/*!
requires
- filters.k() == data.k()
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < filters.nr()
- 0 <= padding_x < filters.nc()
ensures
- When operator() is called, the output tensor will have these dimensions:
- output.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- output.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
- output.num_samples() == data.num_samples()
- output.k() == filters.num_samples()
- The point of setup() is to allow this object to gather information about
all the tensor sizes and filter layouts involved in the computation. In
particular, the reason the tensors are input into setup() is just to
observe their sizes. setup() doesn't do anything with the contents of
the tensors, or store any kind of references to the data or filter
tensors.
!*/
private
:
#ifdef DLIB_USE_CUDA
cuda
::
tensor_conv
impl
;
...
...
dlib/test/dnn.cpp
View file @
023e1398
...
...
@@ -805,8 +805,18 @@ namespace
padding_y
=
(
filters
.
nr
()
-
data
.
nr
()
+
1
)
/
2
;
if
(
!
(
filters
.
nc
()
<=
data
.
nc
()
+
2
*
padding_x
))
padding_x
=
(
filters
.
nc
()
-
data
.
nc
()
+
1
)
/
2
;
conv1
(
output1
,
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
conv2
(
output2
,
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
conv1
.
setup
(
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
conv1
(
false
,
output1
,
data
,
filters
);
conv2
.
setup
(
data
,
filters
,
stride_y
,
stride_x
,
padding_y
,
padding_x
);
conv2
(
false
,
output2
,
data
,
filters
);
dlog
<<
LINFO
<<
"forward error: "
<<
max
(
abs
(
mat
(
output1
)
-
mat
(
output2
)));
DLIB_TEST_MSG
(
max
(
abs
(
mat
(
output1
)
-
mat
(
output2
)))
<
1e-3
,
max
(
abs
(
mat
(
output1
)
-
mat
(
output2
)))
<<
"
\n\t
padding_y: "
<<
padding_y
<<
"
\n\t
padding_x: "
<<
padding_x
);
conv1
(
true
,
output1
,
data
,
filters
);
conv2
(
true
,
output2
,
data
,
filters
);
dlog
<<
LINFO
<<
"forward error: "
<<
max
(
abs
(
mat
(
output1
)
-
mat
(
output2
)));
DLIB_TEST_MSG
(
max
(
abs
(
mat
(
output1
)
-
mat
(
output2
)))
<
1e-3
,
max
(
abs
(
mat
(
output1
)
-
mat
(
output2
)))
<<
"
\n\t
padding_y: "
<<
padding_y
...
...
@@ -824,8 +834,14 @@ namespace
data_gradient1
=
1
;
data_gradient2
=
1
;
conv1
.
get_gradient_for_data
(
gi
,
filters
,
data_gradient1
);
conv2
.
get_gradient_for_data
(
gi
,
filters
,
data_gradient2
);
conv1
.
get_gradient_for_data
(
true
,
gi
,
filters
,
data_gradient1
);
conv2
.
get_gradient_for_data
(
true
,
gi
,
filters
,
data_gradient2
);
dlog
<<
LINFO
<<
"data gradient error: "
<<
max
(
abs
(
mat
(
data_gradient1
)
-
mat
(
data_gradient2
)));
DLIB_TEST
(
max
(
abs
(
mat
(
data_gradient1
)
-
mat
(
data_gradient2
)))
<
1e-3
);
conv1
.
get_gradient_for_data
(
false
,
gi
,
filters
,
data_gradient1
);
conv2
.
get_gradient_for_data
(
false
,
gi
,
filters
,
data_gradient2
);
dlog
<<
LINFO
<<
"data gradient error: "
<<
max
(
abs
(
mat
(
data_gradient1
)
-
mat
(
data_gradient2
)));
DLIB_TEST
(
max
(
abs
(
mat
(
data_gradient1
)
-
mat
(
data_gradient2
)))
<
1e-3
);
...
...
@@ -840,8 +856,15 @@ namespace
filter_gradient1
=
1
;
filter_gradient2
=
1
;
conv1
.
get_gradient_for_filters
(
gi
,
data
,
filter_gradient1
);
conv2
.
get_gradient_for_filters
(
gi
,
data
,
filter_gradient2
);
conv1
.
get_gradient_for_filters
(
false
,
gi
,
data
,
filter_gradient1
);
conv2
.
get_gradient_for_filters
(
false
,
gi
,
data
,
filter_gradient2
);
dlog
<<
LINFO
<<
"filter gradient error: "
<<
max
(
abs
(
mat
(
filter_gradient1
)
-
mat
(
filter_gradient2
)));
DLIB_TEST_MSG
(
max
(
abs
(
mat
(
filter_gradient1
)
-
mat
(
filter_gradient2
)))
<
1e-3
,
max
(
abs
(
mat
(
filter_gradient1
)
-
mat
(
filter_gradient2
))));
conv1
.
get_gradient_for_filters
(
true
,
gi
,
data
,
filter_gradient1
);
conv2
.
get_gradient_for_filters
(
true
,
gi
,
data
,
filter_gradient2
);
dlog
<<
LINFO
<<
"filter gradient error: "
<<
max
(
abs
(
mat
(
filter_gradient1
)
-
mat
(
filter_gradient2
)));
DLIB_TEST_MSG
(
max
(
abs
(
mat
(
filter_gradient1
)
-
mat
(
filter_gradient2
)))
<
1e-3
,
max
(
abs
(
mat
(
filter_gradient1
)
-
mat
(
filter_gradient2
))));
...
...
@@ -1473,6 +1496,36 @@ namespace
auto
res
=
test_layer
(
l
);
DLIB_TEST_MSG
(
res
,
res
);
}
{
print_spinner
();
cont_
<
3
,
3
,
3
,
2
,
2
,
0
,
0
>
l
;
auto
res
=
test_layer
(
l
);
DLIB_TEST_MSG
(
res
,
res
);
}
{
print_spinner
();
cont_
<
3
,
3
,
3
,
2
,
2
>
l
;
auto
res
=
test_layer
(
l
);
DLIB_TEST_MSG
(
res
,
res
);
}
{
print_spinner
();
cont_
<
3
,
3
,
3
,
1
,
1
>
l
;
auto
res
=
test_layer
(
l
);
DLIB_TEST_MSG
(
res
,
res
);
}
{
print_spinner
();
cont_
<
3
,
3
,
3
,
1
,
1
,
0
,
0
>
l
;
auto
res
=
test_layer
(
l
);
DLIB_TEST_MSG
(
res
,
res
);
}
{
print_spinner
();
cont_
<
3
,
2
,
2
,
2
,
2
>
l
;
auto
res
=
test_layer
(
l
);
DLIB_TEST_MSG
(
res
,
res
);
}
{
print_spinner
();
con_
<
3
,
2
,
2
,
2
,
2
>
l
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment