Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
03cfc68a
Commit
03cfc68a
authored
May 22, 2015
by
Davis E. King
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13 from patricksnape/py_corr_tracker
Add a Python interface for the Correlation Tracker
parents
d3a3288e
dd922c66
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
401 additions
and
69 deletions
+401
-69
correlation_tracker.py
python_examples/correlation_tracker.py
+63
-0
CMakeLists.txt
tools/python/CMakeLists.txt
+2
-0
correlation_tracker.cpp
tools/python/src/correlation_tracker.cpp
+166
-0
dlib.cpp
tools/python/src/dlib.cpp
+5
-1
gui.cpp
tools/python/src/gui.cpp
+12
-0
object_detection.cpp
tools/python/src/object_detection.cpp
+23
-65
rectangles.cpp
tools/python/src/rectangles.cpp
+127
-0
shape_predictor.h
tools/python/src/shape_predictor.h
+3
-3
No files found.
python_examples/correlation_tracker.py
0 → 100755
View file @
03cfc68a
#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
# This example shows how to use the correlation_tracker from the dlib Python
# library. This object lets you track the position of an object as it moves
# from frame to frame in a video sequence. To use it, you give the
# correlation_tracker the bounding box of the object you want to track in the
# current video frame. Then it will identify the location of the object in
# subsequent frames.
#
# In this particular example, we are going to run on the
# video sequence that comes with dlib, which can be found in the
# examples/video_frames folder. This video shows a juice box sitting on a table
# and someone is waving the camera around. The task is to track the position of
# the juice box as the camera moves around.
#
# COMPILING THE DLIB PYTHON INTERFACE
# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If
# you are using another python version or operating system then you need to
# compile the dlib python interface before you can use this file. To do this,
# run compile_dlib_python_module.bat. This should work on any operating
# system so long as you have CMake and boost-python installed.
# On Ubuntu, this can be done easily by running the command:
# sudo apt-get install libboost-python-dev cmake
#
# Also note that this example requires scikit-image which can be installed
# via the command:
# pip install -U scikit-image
# Or downloaded from http://scikit-image.org/download.html.
import
os
import
glob
import
dlib
from
skimage
import
io
# Path to the video frames
video_folder
=
os
.
path
.
join
(
".."
,
"examples"
,
"video_frames"
)
# Create the correlation tracker - the object needs to be initialized
# before it can be used
tracker
=
dlib
.
correlation_tracker
()
win
=
dlib
.
image_window
()
# We will track the frames as we load them off of disk
for
k
,
f
in
enumerate
(
sorted
(
glob
.
glob
(
os
.
path
.
join
(
video_folder
,
"*.jpg"
)))):
print
(
"Processing Frame {}"
.
format
(
k
))
img
=
io
.
imread
(
f
)
# We need to initialize the tracker on the first frame
if
k
==
0
:
# Start a track on the juice box. If you look at the first frame you
# will see that the juice box is contained within the bounding
# box (74, 67, 112, 153).
tracker
.
start_track
(
img
,
dlib
.
rectangle
(
74
,
67
,
112
,
153
))
else
:
# Else we just attempt to track from the previous frame
tracker
.
update
(
img
)
win
.
clear_overlay
()
win
.
set_image
(
img
)
win
.
add_overlay
(
tracker
.
get_position
())
dlib
.
hit_enter_to_continue
()
tools/python/CMakeLists.txt
View file @
03cfc68a
...
@@ -18,8 +18,10 @@ set(python_srcs
...
@@ -18,8 +18,10 @@ set(python_srcs
src/sequence_segmenter.cpp
src/sequence_segmenter.cpp
src/svm_struct.cpp
src/svm_struct.cpp
src/image.cpp
src/image.cpp
src/rectangles.cpp
src/object_detection.cpp
src/object_detection.cpp
src/shape_predictor.cpp
src/shape_predictor.cpp
src/correlation_tracker.cpp
)
)
# Only add the GUI module if requested
# Only add the GUI module if requested
...
...
tools/python/src/correlation_tracker.cpp
0 → 100644
View file @
03cfc68a
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <dlib/geometry.h>
#include <boost/python/args.hpp>
#include <dlib/image_processing.h>
using
namespace
dlib
;
using
namespace
std
;
using
namespace
boost
::
python
;
// ----------------------------------------------------------------------------------------
void
start_track
(
correlation_tracker
&
tracker
,
object
img
,
const
drectangle
&
bounding_box
)
{
if
(
is_gray_python_image
(
img
))
{
tracker
.
start_track
(
numpy_gray_image
(
img
),
bounding_box
);
}
else
if
(
is_rgb_python_image
(
img
))
{
tracker
.
start_track
(
numpy_rgb_image
(
img
),
bounding_box
);
}
else
{
throw
dlib
::
error
(
"Unsupported image type, must be 8bit gray or RGB image."
);
}
}
void
start_track_rec
(
correlation_tracker
&
tracker
,
object
img
,
const
rectangle
&
bounding_box
)
{
drectangle
dbounding_box
(
bounding_box
);
start_track
(
tracker
,
img
,
dbounding_box
);
}
double
update
(
correlation_tracker
&
tracker
,
object
img
)
{
if
(
is_gray_python_image
(
img
))
{
return
tracker
.
update
(
numpy_gray_image
(
img
));
}
else
if
(
is_rgb_python_image
(
img
))
{
return
tracker
.
update
(
numpy_rgb_image
(
img
));
}
else
{
throw
dlib
::
error
(
"Unsupported image type, must be 8bit gray or RGB image."
);
}
}
double
update_guess
(
correlation_tracker
&
tracker
,
object
img
,
const
drectangle
&
bounding_box
)
{
if
(
is_gray_python_image
(
img
))
{
return
tracker
.
update
(
numpy_gray_image
(
img
),
bounding_box
);
}
else
if
(
is_rgb_python_image
(
img
))
{
return
tracker
.
update
(
numpy_rgb_image
(
img
),
bounding_box
);
}
else
{
throw
dlib
::
error
(
"Unsupported image type, must be 8bit gray or RGB image."
);
}
}
double
update_guess_rec
(
correlation_tracker
&
tracker
,
object
img
,
const
rectangle
&
bounding_box
)
{
drectangle
dbounding_box
(
bounding_box
);
return
update_guess
(
tracker
,
img
,
dbounding_box
);
}
drectangle
get_position
(
const
correlation_tracker
&
tracker
)
{
return
tracker
.
get_position
();
}
// ----------------------------------------------------------------------------------------
void
bind_correlation_tracker
()
{
using
boost
::
python
::
arg
;
{
typedef
correlation_tracker
type
;
class_
<
type
>
(
"correlation_tracker"
,
"This is a tool for tracking moving objects in a video stream. You give it
\n
\
the bounding box of an object in the first frame and it attempts to track the
\n
\
object in the box from frame to frame.
\n
\
This tool is an implementation of the method described in the following paper:
\n
\
Danelljan, Martin, et al. 'Accurate scale estimation for robust visual
\n
\
tracking.' Proceedings of the British Machine Vision Conference BMVC. 2014."
)
.
def
(
"start_track"
,
&::
start_track
,
(
arg
(
"image"
),
arg
(
"bounding_box"
)),
"\
requires
\n
\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image.
\n
\
- bounding_box.is_empty() == false
\n
\
ensures
\n
\
- This object will start tracking the thing inside the bounding box in the
\n
\
given image. That is, if you call update() with subsequent video frames
\n
\
then it will try to keep track of the position of the object inside bounding_box.
\n
\
- #get_position() == bounding_box"
)
.
def
(
"start_track"
,
&::
start_track_rec
,
(
arg
(
"image"
),
arg
(
"bounding_box"
)),
"\
requires
\n
\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image.
\n
\
- bounding_box.is_empty() == false
\n
\
ensures
\n
\
- This object will start tracking the thing inside the bounding box in the
\n
\
given image. That is, if you call update() with subsequent video frames
\n
\
then it will try to keep track of the position of the object inside bounding_box.
\n
\
- #get_position() == bounding_box"
)
.
def
(
"update"
,
&::
update
,
arg
(
"image"
),
"\
requires
\n
\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image.
\n
\
- get_position().is_empty() == false
\n
\
(i.e. you must have started tracking by calling start_track())
\n
\
ensures
\n
\
- performs: return update(img, get_position())"
)
.
def
(
"update"
,
&::
update_guess
,
(
arg
(
"image"
),
arg
(
"guess"
)),
"\
requires
\n
\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image.
\n
\
- get_position().is_empty() == false
\n
\
(i.e. you must have started tracking by calling start_track())
\n
\
ensures
\n
\
- When searching for the object in img, we search in the area around the
\n
\
provided guess.
\n
\
- #get_position() == the new predicted location of the object in img. This
\n
\
location will be a copy of guess that has been translated and scaled
\n
\
appropriately based on the content of img so that it, hopefully, bounds
\n
\
the object in img.
\n
\
- Returns the peak to side-lobe ratio. This is a number that measures how
\n
\
confident the tracker is that the object is inside #get_position().
\n
\
Larger values indicate higher confidence."
)
.
def
(
"update"
,
&::
update_guess_rec
,
(
arg
(
"image"
),
arg
(
"guess"
)),
"\
requires
\n
\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image.
\n
\
- get_position().is_empty() == false
\n
\
(i.e. you must have started tracking by calling start_track())
\n
\
ensures
\n
\
- When searching for the object in img, we search in the area around the
\n
\
provided guess.
\n
\
- #get_position() == the new predicted location of the object in img. This
\n
\
location will be a copy of guess that has been translated and scaled
\n
\
appropriately based on the content of img so that it, hopefully, bounds
\n
\
the object in img.
\n
\
- Returns the peak to side-lobe ratio. This is a number that measures how
\n
\
confident the tracker is that the object is inside #get_position().
\n
\
Larger values indicate higher confidence."
)
.
def
(
"get_position"
,
&::
get_position
,
"returns the predicted position of the object under track."
);
}
}
tools/python/src/dlib.cpp
View file @
03cfc68a
// Copyright (C) 201
3
Davis E. King (davis@dlib.net)
// Copyright (C) 201
5
Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
// License: Boost Software License See LICENSE.txt for the full license.
#include <boost/python.hpp>
#include <boost/python.hpp>
...
@@ -14,8 +14,10 @@ void bind_cca();
...
@@ -14,8 +14,10 @@ void bind_cca();
void
bind_sequence_segmenter
();
void
bind_sequence_segmenter
();
void
bind_svm_struct
();
void
bind_svm_struct
();
void
bind_image_classes
();
void
bind_image_classes
();
void
bind_rectangles
();
void
bind_object_detection
();
void
bind_object_detection
();
void
bind_shape_predictors
();
void
bind_shape_predictors
();
void
bind_correlation_tracker
();
#ifndef DLIB_NO_GUI_SUPPORT
#ifndef DLIB_NO_GUI_SUPPORT
void
bind_gui
();
void
bind_gui
();
...
@@ -38,8 +40,10 @@ BOOST_PYTHON_MODULE(dlib)
...
@@ -38,8 +40,10 @@ BOOST_PYTHON_MODULE(dlib)
bind_sequence_segmenter
();
bind_sequence_segmenter
();
bind_svm_struct
();
bind_svm_struct
();
bind_image_classes
();
bind_image_classes
();
bind_rectangles
();
bind_object_detection
();
bind_object_detection
();
bind_shape_predictors
();
bind_shape_predictors
();
bind_correlation_tracker
();
#ifndef DLIB_NO_GUI_SUPPORT
#ifndef DLIB_NO_GUI_SUPPORT
bind_gui
();
bind_gui
();
#endif
#endif
...
...
tools/python/src/gui.cpp
View file @
03cfc68a
...
@@ -54,6 +54,16 @@ void add_overlay_rect (
...
@@ -54,6 +54,16 @@ void add_overlay_rect (
win
.
add_overlay
(
rect
,
color
);
win
.
add_overlay
(
rect
,
color
);
}
}
void
add_overlay_drect
(
image_window
&
win
,
const
drectangle
&
drect
,
const
rgb_pixel
&
color
)
{
rectangle
rect
(
drect
.
left
(),
drect
.
top
(),
drect
.
right
(),
drect
.
bottom
());
win
.
add_overlay
(
rect
,
color
);
}
void
add_overlay_parts
(
void
add_overlay_parts
(
image_window
&
win
,
image_window
&
win
,
const
full_object_detection
&
detection
,
const
full_object_detection
&
detection
,
...
@@ -106,6 +116,8 @@ void bind_gui()
...
@@ -106,6 +116,8 @@ void bind_gui()
"Add a list of rectangles to the image_window. They will be displayed as red boxes by default, but the color can be passed."
)
"Add a list of rectangles to the image_window. They will be displayed as red boxes by default, but the color can be passed."
)
.
def
(
"add_overlay"
,
add_overlay_rect
,
(
arg
(
"rectangle"
),
arg
(
"color"
)
=
rgb_pixel
(
255
,
0
,
0
)),
.
def
(
"add_overlay"
,
add_overlay_rect
,
(
arg
(
"rectangle"
),
arg
(
"color"
)
=
rgb_pixel
(
255
,
0
,
0
)),
"Add a rectangle to the image_window. It will be displayed as a red box by default, but the color can be passed."
)
"Add a rectangle to the image_window. It will be displayed as a red box by default, but the color can be passed."
)
.
def
(
"add_overlay"
,
add_overlay_drect
,
(
arg
(
"rectangle"
),
arg
(
"color"
)
=
rgb_pixel
(
255
,
0
,
0
)),
"Add a rectangle to the image_window. It will be displayed as a red box by default, but the color can be passed."
)
.
def
(
"add_overlay"
,
add_overlay_parts
,
(
arg
(
"detection"
),
arg
(
"color"
)
=
rgb_pixel
(
0
,
0
,
255
)),
.
def
(
"add_overlay"
,
add_overlay_parts
,
(
arg
(
"detection"
),
arg
(
"color"
)
=
rgb_pixel
(
0
,
0
,
255
)),
"Add full_object_detection parts to the image window. They will be displayed as blue lines by default, but the color can be passed."
)
"Add full_object_detection parts to the image window. They will be displayed as blue lines by default, but the color can be passed."
)
.
def
(
"wait_until_closed"
,
&
type
::
wait_until_closed
,
.
def
(
"wait_until_closed"
,
&
type
::
wait_until_closed
,
...
...
tools/python/src/object_detection.cpp
View file @
03cfc68a
// Copyright (C) 201
4
Davis E. King (davis@dlib.net)
// Copyright (C) 201
5
Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <dlib/python.h>
...
@@ -6,7 +6,6 @@
...
@@ -6,7 +6,6 @@
#include <boost/python/args.hpp>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include "indexing.h"
#include "simple_object_detector.h"
#include "simple_object_detector.h"
#include "simple_object_detector_py.h"
#include "simple_object_detector_py.h"
#include "conversion.h"
#include "conversion.h"
...
@@ -26,29 +25,6 @@ string print_simple_test_results(const simple_test_results& r)
...
@@ -26,29 +25,6 @@ string print_simple_test_results(const simple_test_results& r)
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
long
left
(
const
rectangle
&
r
)
{
return
r
.
left
();
}
long
top
(
const
rectangle
&
r
)
{
return
r
.
top
();
}
long
right
(
const
rectangle
&
r
)
{
return
r
.
right
();
}
long
bottom
(
const
rectangle
&
r
)
{
return
r
.
bottom
();
}
long
width
(
const
rectangle
&
r
)
{
return
r
.
width
();
}
long
height
(
const
rectangle
&
r
)
{
return
r
.
height
();
}
string
print_rectangle_str
(
const
rectangle
&
r
)
{
std
::
ostringstream
sout
;
sout
<<
r
;
return
sout
.
str
();
}
string
print_rectangle_repr
(
const
rectangle
&
r
)
{
std
::
ostringstream
sout
;
sout
<<
"rectangle("
<<
r
.
left
()
<<
","
<<
r
.
top
()
<<
","
<<
r
.
right
()
<<
","
<<
r
.
bottom
()
<<
")"
;
return
sout
.
str
();
}
// ----------------------------------------------------------------------------------------
inline
simple_object_detector_py
train_simple_object_detector_on_images_py
(
inline
simple_object_detector_py
train_simple_object_detector_on_images_py
(
const
boost
::
python
::
list
&
pyimages
,
const
boost
::
python
::
list
&
pyimages
,
const
boost
::
python
::
list
&
pyboxes
,
const
boost
::
python
::
list
&
pyboxes
,
...
@@ -153,55 +129,45 @@ inline void find_candidate_object_locations_py (
...
@@ -153,55 +129,45 @@ inline void find_candidate_object_locations_py (
void
bind_object_detection
()
void
bind_object_detection
()
{
{
using
boost
::
python
::
arg
;
using
boost
::
python
::
arg
;
{
class_
<
simple_object_detector_training_options
>
(
"simple_object_detector_training_options"
,
typedef
simple_object_detector_training_options
type
;
class_
<
type
>
(
"simple_object_detector_training_options"
,
"This object is a container for the options to the train_simple_object_detector() routine."
)
"This object is a container for the options to the train_simple_object_detector() routine."
)
.
add_property
(
"be_verbose"
,
&
simple_object_detector_training_options
::
be_verbose
,
.
add_property
(
"be_verbose"
,
&
type
::
be_verbose
,
&
simple_object_detector_training_options
::
be_verbose
,
&
type
::
be_verbose
,
"If true, train_simple_object_detector() will print out a lot of information to the screen while training."
)
"If true, train_simple_object_detector() will print out a lot of information to the screen while training."
)
.
add_property
(
"add_left_right_image_flips"
,
&
simple_object_detector_training_options
::
add_left_right_image_flips
,
.
add_property
(
"add_left_right_image_flips"
,
&
type
::
add_left_right_image_flips
,
&
simple_object_detector_training_options
::
add_left_right_image_flips
,
&
type
::
add_left_right_image_flips
,
"if true, train_simple_object_detector() will assume the objects are
\n
\
"if true, train_simple_object_detector() will assume the objects are
\n
\
left/right symmetric and add in left right flips of the training
\n
\
left/right symmetric and add in left right flips of the training
\n
\
images. This doubles the size of the training dataset."
)
images. This doubles the size of the training dataset."
)
.
add_property
(
"detection_window_size"
,
&
simple_object_detector_training_options
::
detection_window_size
,
.
add_property
(
"detection_window_size"
,
&
type
::
detection_window_size
,
&
simple_object_detector_training_options
::
detection_window_size
,
&
type
::
detection_window_size
,
"The sliding window used will have about this many pixels inside it."
)
"The sliding window used will have about this many pixels inside it."
)
.
add_property
(
"C"
,
&
simple_object_detector_training_options
::
C
,
.
add_property
(
"C"
,
&
type
::
C
,
&
simple_object_detector_training_options
::
C
,
&
type
::
C
,
"C is the usual SVM C regularization parameter. So it is passed to
\n
\
"C is the usual SVM C regularization parameter. So it is passed to
\n
\
structural_object_detection_trainer::set_c(). Larger values of C
\n
\
structural_object_detection_trainer::set_c(). Larger values of C
\n
\
will encourage the trainer to fit the data better but might lead to
\n
\
will encourage the trainer to fit the data better but might lead to
\n
\
overfitting. Therefore, you must determine the proper setting of
\n
\
overfitting. Therefore, you must determine the proper setting of
\n
\
this parameter experimentally."
)
this parameter experimentally."
)
.
add_property
(
"epsilon"
,
&
simple_object_detector_training_options
::
epsilon
,
.
add_property
(
"epsilon"
,
&
type
::
epsilon
,
&
simple_object_detector_training_options
::
epsilon
,
&
type
::
epsilon
,
"epsilon is the stopping epsilon. Smaller values make the trainer's
\n
\
"epsilon is the stopping epsilon. Smaller values make the trainer's
\n
\
solver more accurate but might take longer to train."
)
solver more accurate but might take longer to train."
)
.
add_property
(
"num_threads"
,
&
simple_object_detector_training_options
::
num_threads
,
.
add_property
(
"num_threads"
,
&
type
::
num_threads
,
&
simple_object_detector_training_options
::
num_threads
,
&
type
::
num_threads
,
"train_simple_object_detector() will use this many threads of
\n
\
"train_simple_object_detector() will use this many threads of
\n
\
execution. Set this to the number of CPU cores on your machine to
\n
\
execution. Set this to the number of CPU cores on your machine to
\n
\
obtain the fastest training speed."
);
obtain the fastest training speed."
);
}
class_
<
simple_test_results
>
(
"simple_test_results"
)
.
add_property
(
"precision"
,
&
simple_test_results
::
precision
)
.
add_property
(
"recall"
,
&
simple_test_results
::
recall
)
.
add_property
(
"average_precision"
,
&
simple_test_results
::
average_precision
)
.
def
(
"__str__"
,
&::
print_simple_test_results
);
{
{
typedef
rectangle
type
;
typedef
simple_test_results
type
;
class_
<
type
>
(
"rectangle"
,
"This object represents a rectangular area of an image."
)
class_
<
type
>
(
"simple_test_results"
)
.
def
(
init
<
long
,
long
,
long
,
long
>
(
(
arg
(
"left"
),
arg
(
"top"
),
arg
(
"right"
),
arg
(
"bottom"
))
))
.
add_property
(
"precision"
,
&
type
::
precision
)
.
def
(
"left"
,
&::
left
)
.
add_property
(
"recall"
,
&
type
::
recall
)
.
def
(
"top"
,
&::
top
)
.
add_property
(
"average_precision"
,
&
type
::
average_precision
)
.
def
(
"right"
,
&::
right
)
.
def
(
"__str__"
,
&::
print_simple_test_results
);
.
def
(
"bottom"
,
&::
bottom
)
.
def
(
"width"
,
&::
width
)
.
def
(
"height"
,
&::
height
)
.
def
(
"__str__"
,
&::
print_rectangle_str
)
.
def
(
"__repr__"
,
&::
print_rectangle_repr
)
.
def_pickle
(
serialize_pickle
<
type
>
());
}
}
// Here, kvals is actually the result of linspace(start, end, num) and it is different from kvals used
// Here, kvals is actually the result of linspace(start, end, num) and it is different from kvals used
...
@@ -398,14 +364,6 @@ ensures \n\
...
@@ -398,14 +364,6 @@ ensures \n\
.
def
(
"save"
,
save_simple_object_detector_py
,
(
arg
(
"detector_output_filename"
)),
"Save a simple_object_detector to the provided path."
)
.
def
(
"save"
,
save_simple_object_detector_py
,
(
arg
(
"detector_output_filename"
)),
"Save a simple_object_detector to the provided path."
)
.
def_pickle
(
serialize_pickle
<
type
>
());
.
def_pickle
(
serialize_pickle
<
type
>
());
}
}
{
typedef
std
::
vector
<
rectangle
>
type
;
class_
<
type
>
(
"rectangles"
,
"An array of rectangle objects."
)
.
def
(
vector_indexing_suite
<
type
>
())
.
def
(
"clear"
,
&
type
::
clear
)
.
def
(
"resize"
,
resize
<
type
>
)
.
def_pickle
(
serialize_pickle
<
type
>
());
}
}
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
tools/python/src/rectangles.cpp
0 → 100644
View file @
03cfc68a
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include "indexing.h"
using
namespace
dlib
;
using
namespace
std
;
using
namespace
boost
::
python
;
// ----------------------------------------------------------------------------------------
long
left
(
const
rectangle
&
r
)
{
return
r
.
left
();
}
long
top
(
const
rectangle
&
r
)
{
return
r
.
top
();
}
long
right
(
const
rectangle
&
r
)
{
return
r
.
right
();
}
long
bottom
(
const
rectangle
&
r
)
{
return
r
.
bottom
();
}
long
width
(
const
rectangle
&
r
)
{
return
r
.
width
();
}
long
height
(
const
rectangle
&
r
)
{
return
r
.
height
();
}
unsigned
long
area
(
const
rectangle
&
r
)
{
return
r
.
area
();
}
double
dleft
(
const
drectangle
&
r
)
{
return
r
.
left
();
}
double
dtop
(
const
drectangle
&
r
)
{
return
r
.
top
();
}
double
dright
(
const
drectangle
&
r
)
{
return
r
.
right
();
}
double
dbottom
(
const
drectangle
&
r
)
{
return
r
.
bottom
();
}
double
dwidth
(
const
drectangle
&
r
)
{
return
r
.
width
();
}
double
dheight
(
const
drectangle
&
r
)
{
return
r
.
height
();
}
double
darea
(
const
drectangle
&
r
)
{
return
r
.
area
();
}
template
<
typename
rect_type
>
bool
is_empty
(
const
rect_type
&
r
)
{
return
r
.
is_empty
();
}
template
<
typename
rect_type
>
point
center
(
const
rect_type
&
r
)
{
return
center
(
r
);
}
template
<
typename
rect_type
>
point
dcenter
(
const
rect_type
&
r
)
{
return
dcenter
(
r
);
}
template
<
typename
rect_type
>
bool
contains
(
const
rect_type
&
r
,
const
point
&
p
)
{
return
r
.
contains
(
p
);
}
template
<
typename
rect_type
>
bool
contains_xy
(
const
rect_type
&
r
,
const
long
x
,
const
long
y
)
{
return
r
.
contains
(
point
(
x
,
y
));
}
template
<
typename
rect_type
>
bool
contains_rec
(
const
rect_type
&
r
,
const
rect_type
&
r2
)
{
return
r
.
contains
(
r2
);
}
template
<
typename
rect_type
>
rect_type
intersect
(
const
rect_type
&
r
,
const
rect_type
&
r2
)
{
return
r
.
intersect
(
r2
);
}
template
<
typename
rect_type
>
string
print_rectangle_str
(
const
rect_type
&
r
)
{
std
::
ostringstream
sout
;
sout
<<
r
;
return
sout
.
str
();
}
template
<
typename
rect_type
>
string
print_rectangle_repr
(
const
rect_type
&
r
)
{
std
::
ostringstream
sout
;
sout
<<
"rectangle("
<<
r
.
left
()
<<
","
<<
r
.
top
()
<<
","
<<
r
.
right
()
<<
","
<<
r
.
bottom
()
<<
")"
;
return
sout
.
str
();
}
// ----------------------------------------------------------------------------------------
void
bind_rectangles
()
{
using
boost
::
python
::
arg
;
{
typedef
rectangle
type
;
class_
<
type
>
(
"rectangle"
,
"This object represents a rectangular area of an image."
)
.
def
(
init
<
long
,
long
,
long
,
long
>
(
(
arg
(
"left"
),
arg
(
"top"
),
arg
(
"right"
),
arg
(
"bottom"
))
))
.
def
(
"area"
,
&::
area
)
.
def
(
"left"
,
&::
left
)
.
def
(
"top"
,
&::
top
)
.
def
(
"right"
,
&::
right
)
.
def
(
"bottom"
,
&::
bottom
)
.
def
(
"width"
,
&::
width
)
.
def
(
"height"
,
&::
height
)
.
def
(
"is_empty"
,
&::
is_empty
<
type
>
)
.
def
(
"center"
,
&::
center
<
type
>
)
.
def
(
"dcenter"
,
&::
dcenter
<
type
>
)
.
def
(
"contains"
,
&::
contains
<
type
>
,
arg
(
"point"
))
.
def
(
"contains"
,
&::
contains_xy
<
type
>
,
(
arg
(
"x"
),
arg
(
"y"
)))
.
def
(
"contains"
,
&::
contains_rec
<
type
>
,
(
arg
(
"rectangle"
)))
.
def
(
"intersect"
,
&::
intersect
<
type
>
,
(
arg
(
"rectangle"
)))
.
def
(
"__str__"
,
&::
print_rectangle_str
<
type
>
)
.
def
(
"__repr__"
,
&::
print_rectangle_repr
<
type
>
)
.
def_pickle
(
serialize_pickle
<
type
>
());
}
{
typedef
drectangle
type
;
class_
<
type
>
(
"drectangle"
,
"This object represents a rectangular area of an image with floating point coordinates."
)
.
def
(
init
<
double
,
double
,
double
,
double
>
(
(
arg
(
"left"
),
arg
(
"top"
),
arg
(
"right"
),
arg
(
"bottom"
))
))
.
def
(
"area"
,
&::
darea
)
.
def
(
"left"
,
&::
dleft
)
.
def
(
"top"
,
&::
dtop
)
.
def
(
"right"
,
&::
dright
)
.
def
(
"bottom"
,
&::
dbottom
)
.
def
(
"width"
,
&::
dwidth
)
.
def
(
"height"
,
&::
dheight
)
.
def
(
"is_empty"
,
&::
is_empty
<
type
>
)
.
def
(
"center"
,
&::
center
<
type
>
)
.
def
(
"dcenter"
,
&::
dcenter
<
type
>
)
.
def
(
"contains"
,
&::
contains
<
type
>
,
arg
(
"point"
))
.
def
(
"contains"
,
&::
contains_xy
<
type
>
,
(
arg
(
"x"
),
arg
(
"y"
)))
.
def
(
"contains"
,
&::
contains_rec
<
type
>
,
(
arg
(
"rectangle"
)))
.
def
(
"intersect"
,
&::
intersect
<
type
>
,
(
arg
(
"rectangle"
)))
.
def
(
"__str__"
,
&::
print_rectangle_str
<
type
>
)
.
def
(
"__repr__"
,
&::
print_rectangle_repr
<
type
>
)
.
def_pickle
(
serialize_pickle
<
type
>
());
}
{
typedef
std
::
vector
<
rectangle
>
type
;
class_
<
type
>
(
"rectangles"
,
"An array of rectangle objects."
)
.
def
(
vector_indexing_suite
<
type
>
())
.
def
(
"clear"
,
&
type
::
clear
)
.
def
(
"resize"
,
resize
<
type
>
)
.
def_pickle
(
serialize_pickle
<
type
>
());
}
}
// ----------------------------------------------------------------------------------------
tools/python/src/shape_predictor.h
View file @
03cfc68a
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SHAPE_PREDICTOR_
DETECTOR_
H__
#ifndef DLIB_SHAPE_PREDICTOR_H__
#define DLIB_SHAPE_PREDICTOR_
DETECTOR_
H__
#define DLIB_SHAPE_PREDICTOR_H__
#include "dlib/string.h"
#include "dlib/string.h"
#include "dlib/geometry.h"
#include "dlib/geometry.h"
...
@@ -179,5 +179,5 @@ namespace dlib
...
@@ -179,5 +179,5 @@ namespace dlib
}
}
#endif // DLIB_SHAPE_PREDICTOR_
DETECTOR_
H__
#endif // DLIB_SHAPE_PREDICTOR_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment