Commit 0561d607 authored by Davis King's avatar Davis King

updated docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%404018
parent 32142dea
......@@ -71,6 +71,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>empirical_kernel_map</item>
<item>kkmeans</item>
<item>svm_nu_trainer</item>
<item>svm_one_class_trainer</item>
<item>svm_c_trainer</item>
<item>svm_c_linear_trainer</item>
<item>svm_c_ekm_trainer</item>
......@@ -944,6 +945,28 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
</component>
<!-- ************************************************************************* -->
<component>
<name>svm_one_class_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_one_class_trainer_abstract.h</spec_file>
<description>
<p>
Trains a one-class support vector classifier and outputs a <a href="#decision_function">decision_function</a>.
It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
</p>
The implementation of the one-class training algorithm used by this library is based
on the following paper:
<ul>
<li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
</ul>
</description>
</component>
<!-- ************************************************************************* -->
<component>
......
......@@ -408,12 +408,14 @@ subject to the following constraint:
This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
This object implements the strategy used by the LIBSVM tool. The following paper
This object implements the strategy used by the LIBSVM tool. The following papers
can be consulted for additional details:
<ul>
<li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
<li>Working Set Selection Using Second Order Information for Training Support Vector Machines by
Fan, Chen, and Lin. In the Journal of Machine Learning Research 2005.</li>
</ul>
</description>
......
......@@ -166,6 +166,7 @@
<term file="ml.html" name="is_binary_classification_problem"/>
<term file="ml.html" name="svm_nu_trainer"/>
<term file="ml.html" name="svm_c_trainer"/>
<term file="ml.html" name="svm_one_class_trainer"/>
<term file="ml.html" name="svm_c_linear_trainer"/>
<term file="ml.html" name="svm_c_ekm_trainer"/>
<term file="ml.html" name="rvm_trainer"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment