Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
06cf15a0
Commit
06cf15a0
authored
Oct 16, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added loss_metric_
parent
0848616d
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
144 additions
and
0 deletions
+144
-0
loss.h
dlib/dnn/loss.h
+144
-0
No files found.
dlib/dnn/loss.h
View file @
06cf15a0
...
...
@@ -859,6 +859,150 @@ namespace dlib
template
<
typename
SUBNET
>
using
loss_mmod
=
add_loss_layer
<
loss_mmod_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_metric_
{
public
:
typedef
unsigned
long
label_type
;
template
<
typename
const_label_iterator
,
typename
SUBNET
>
double
compute_loss_value_and_gradient
(
const
tensor
&
input_tensor
,
const_label_iterator
truth
,
SUBNET
&
sub
)
const
{
const
tensor
&
output_tensor
=
sub
.
get_output
();
tensor
&
grad
=
sub
.
get_gradient_input
();
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
!=
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
%
sub
.
sample_expansion_factor
()
==
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
grad
.
num_samples
());
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
DLIB_CASSERT
(
output_tensor
.
nr
()
==
1
&&
output_tensor
.
nc
()
==
1
);
DLIB_CASSERT
(
grad
.
nr
()
==
1
&&
grad
.
nc
()
==
1
);
const
float
margin
=
0
.
5
;
temp
.
set_size
(
output_tensor
.
num_samples
(),
output_tensor
.
num_samples
());
grad_mul
.
copy_size
(
temp
);
tt
::
gemm
(
0
,
temp
,
1
,
output_tensor
,
false
,
output_tensor
,
true
);
const
double
num_pairs
=
output_tensor
.
num_samples
()
*
(
output_tensor
.
num_samples
()
-
1
)
/
2
.
0
;
// The whole objective function is multiplied by this to scale the loss
// relative to the number of things in the mini-batch.
const
double
scale
=
1
.
0
/
num_pairs
;
double
loss
=
0
;
// loop over all the pairs of training samples and compute the loss and
// gradients.
const
float
*
d
=
temp
.
host
();
float
*
gm
=
grad_mul
.
host
();
for
(
long
r
=
0
;
r
<
temp
.
num_samples
();
++
r
)
{
gm
[
r
*
temp
.
num_samples
()
+
r
]
=
0
;
const
auto
x_label
=
*
(
truth
+
r
);
auto
xx
=
d
[
r
*
temp
.
num_samples
()
+
r
];
for
(
long
c
=
0
;
c
<
temp
.
num_samples
();
++
c
)
{
if
(
r
==
c
)
continue
;
const
auto
y_label
=
*
(
truth
+
c
);
auto
yy
=
d
[
c
*
temp
.
num_samples
()
+
c
];
auto
xy
=
d
[
r
*
temp
.
num_samples
()
+
c
];
// compute the distance between x and y samples.
auto
d2
=
xx
+
yy
-
2
*
xy
;
if
(
d2
<=
0
)
d2
=
0
;
else
d2
=
std
::
sqrt
(
d2
);
if
(
x_label
==
y_label
)
{
// Things with the same label should have distances < 1 between
// them. If not then we experience non-zero loss.
if
(
d2
>
1
-
margin
)
{
loss
+=
scale
*
(
d2
-
(
1
-
margin
));
gm
[
r
*
temp
.
num_samples
()
+
r
]
+=
scale
/
d2
;
gm
[
r
*
temp
.
num_samples
()
+
c
]
=
-
scale
/
d2
;
}
else
{
gm
[
r
*
temp
.
num_samples
()
+
c
]
=
0
;
}
}
else
{
// Things with different labels should have distances > 1 between
// them. If not then we experience non-zero loss.
if
(
d2
<
1
+
margin
)
{
loss
+=
scale
*
((
1
+
margin
)
-
d2
);
gm
[
r
*
temp
.
num_samples
()
+
r
]
-=
scale
/
d2
;
gm
[
r
*
temp
.
num_samples
()
+
c
]
=
scale
/
d2
;
}
else
{
gm
[
r
*
temp
.
num_samples
()
+
c
]
=
0
;
}
}
}
}
tt
::
gemm
(
0
,
grad
,
1
,
grad_mul
,
false
,
output_tensor
,
false
);
return
loss
;
}
friend
void
serialize
(
const
loss_metric_
&
,
std
::
ostream
&
out
)
{
serialize
(
"loss_metric_"
,
out
);
}
friend
void
deserialize
(
loss_metric_
&
,
std
::
istream
&
in
)
{
std
::
string
version
;
deserialize
(
version
,
in
);
if
(
version
!=
"loss_metric_"
)
throw
serialization_error
(
"Unexpected version found while deserializing dlib::loss_metric_."
);
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
loss_metric_
&
)
{
out
<<
"loss_metric"
;
return
out
;
}
friend
void
to_xml
(
const
loss_metric_
&
/*item*/
,
std
::
ostream
&
out
)
{
out
<<
"<loss_metric/>"
;
}
private
:
// These variables are only here to avoid being reallocated over and over in
// compute_loss_value_and_gradient()
mutable
resizable_tensor
temp
,
grad_mul
;
};
template
<
typename
SUBNET
>
using
loss_metric
=
add_loss_layer
<
loss_metric_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment