Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
07a7995a
Commit
07a7995a
authored
Jan 30, 2018
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added make_bounding_box_regression_training_data()
parent
a898ebbd
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
85 additions
and
0 deletions
+85
-0
shape_predictor_trainer.h
dlib/image_processing/shape_predictor_trainer.h
+47
-0
shape_predictor_trainer_abstract.h
dlib/image_processing/shape_predictor_trainer_abstract.h
+38
-0
No files found.
dlib/image_processing/shape_predictor_trainer.h
View file @
07a7995a
...
@@ -7,6 +7,8 @@
...
@@ -7,6 +7,8 @@
#include "shape_predictor.h"
#include "shape_predictor.h"
#include "../console_progress_indicator.h"
#include "../console_progress_indicator.h"
#include "../threads.h"
#include "../threads.h"
#include "../data_io/image_dataset_metadata.h"
#include "box_overlap_testing.h"
namespace
dlib
namespace
dlib
{
{
...
@@ -787,6 +789,51 @@ namespace dlib
...
@@ -787,6 +789,51 @@ namespace dlib
padding_mode_t
_padding_mode
;
padding_mode_t
_padding_mode
;
};
};
// ----------------------------------------------------------------------------------------
template
<
typename
some_type_of_rectangle
>
image_dataset_metadata
::
dataset
make_bounding_box_regression_training_data
(
const
image_dataset_metadata
::
dataset
&
truth
,
const
std
::
vector
<
std
::
vector
<
some_type_of_rectangle
>>&
detections
)
{
DLIB_CASSERT
(
truth
.
images
.
size
()
==
detections
.
size
(),
"truth.images.size(): "
<<
truth
.
images
.
size
()
<<
"
\t
detections.size(): "
<<
detections
.
size
()
);
image_dataset_metadata
::
dataset
result
=
truth
;
for
(
size_t
i
=
0
;
i
<
truth
.
images
.
size
();
++
i
)
{
result
.
images
[
i
].
boxes
.
clear
();
for
(
auto
truth_box
:
truth
.
images
[
i
].
boxes
)
{
if
(
truth_box
.
ignore
)
continue
;
// Find the detection that best matches the current truth_box.
auto
det
=
max_scoring_element
(
detections
[
i
],
[
&
truth_box
](
const
rectangle
&
r
)
{
return
box_intersection_over_union
(
r
,
truth_box
.
rect
);
});
if
(
det
.
second
>
0
.
5
)
{
// Remove any existing parts and replace them with the truth_box corners.
truth_box
.
parts
.
clear
();
truth_box
.
parts
[
"top_left"
]
=
truth_box
.
rect
.
tl_corner
();
truth_box
.
parts
[
"top_right"
]
=
truth_box
.
rect
.
tr_corner
();
truth_box
.
parts
[
"bottom_left"
]
=
truth_box
.
rect
.
bl_corner
();
truth_box
.
parts
[
"bottom_right"
]
=
truth_box
.
rect
.
br_corner
();
// Now replace the bounding truth_box with the detector's bounding truth_box.
truth_box
.
rect
=
det
.
first
;
result
.
images
[
i
].
boxes
.
push_back
(
truth_box
);
}
}
}
return
result
;
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
}
}
...
...
dlib/image_processing/shape_predictor_trainer_abstract.h
View file @
07a7995a
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
#ifdef DLIB_SHAPE_PREDICToR_TRAINER_ABSTRACT_H_
#ifdef DLIB_SHAPE_PREDICToR_TRAINER_ABSTRACT_H_
#include "shape_predictor_abstract.h"
#include "shape_predictor_abstract.h"
#include "../data_io/image_dataset_metadata.h"
namespace
dlib
namespace
dlib
{
{
...
@@ -365,6 +366,43 @@ namespace dlib
...
@@ -365,6 +366,43 @@ namespace dlib
!*/
!*/
};
};
// ----------------------------------------------------------------------------------------
template
<
typename
some_type_of_rectangle
>
image_dataset_metadata
::
dataset
make_bounding_box_regression_training_data
(
const
image_dataset_metadata
::
dataset
&
truth
,
const
std
::
vector
<
std
::
vector
<
some_type_of_rectangle
>>&
detections
);
/*!
requires
- truth.images.size() == detections.size()
- some_type_of_rectangle == rectangle, drectangle, mmod_rect, or any other type
that is convertible to a rectangle.
ensures
- Suppose you have an object detector that can roughly locate objects in an
image. This means your detector draws boxes around objects, but these are
*rough* boxes in the sense that they aren't positioned super accurately. For
instance, HOG based detectors usually have a stride of 8 pixels. So the
positional accuracy is going to be, at best, +/-8 pixels.
If you want to get better positional accuracy one easy thing to do is train a
shape_predictor to give you the corners of the object. The
make_bounding_box_regression_training_data() routine helps you do this by
creating an appropriate training dataset. It does this by taking the dataset
you used to train your detector (the truth object), and combining that with
the output of your detector on each image in the training dataset (the
detections object). In particular, it will create a new annotated dataset
where each object box is one of the rectangles from detections and that
object has 4 part annotations, the corners of the truth rectangle
corresponding to that detection rectangle. You can then take the returned
dataset and train a shape_predictor on it. The resulting shape_predictor can
then be used to do bounding box regression.
- We assume that detections[i] contains object detections corresponding to
the image truth.images[i].
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment