Commit 07a7995a authored by Davis King's avatar Davis King

Added make_bounding_box_regression_training_data()

parent a898ebbd
...@@ -7,6 +7,8 @@ ...@@ -7,6 +7,8 @@
#include "shape_predictor.h" #include "shape_predictor.h"
#include "../console_progress_indicator.h" #include "../console_progress_indicator.h"
#include "../threads.h" #include "../threads.h"
#include "../data_io/image_dataset_metadata.h"
#include "box_overlap_testing.h"
namespace dlib namespace dlib
{ {
...@@ -787,6 +789,51 @@ namespace dlib ...@@ -787,6 +789,51 @@ namespace dlib
padding_mode_t _padding_mode; padding_mode_t _padding_mode;
}; };
// ----------------------------------------------------------------------------------------
template <
typename some_type_of_rectangle
>
image_dataset_metadata::dataset make_bounding_box_regression_training_data (
const image_dataset_metadata::dataset& truth,
const std::vector<std::vector<some_type_of_rectangle>>& detections
)
{
DLIB_CASSERT(truth.images.size() == detections.size(),
"truth.images.size(): "<< truth.images.size() <<
"\tdetections.size(): "<< detections.size()
);
image_dataset_metadata::dataset result = truth;
for (size_t i = 0; i < truth.images.size(); ++i)
{
result.images[i].boxes.clear();
for (auto truth_box : truth.images[i].boxes)
{
if (truth_box.ignore)
continue;
// Find the detection that best matches the current truth_box.
auto det = max_scoring_element(detections[i], [&truth_box](const rectangle& r) { return box_intersection_over_union(r, truth_box.rect); });
if (det.second > 0.5)
{
// Remove any existing parts and replace them with the truth_box corners.
truth_box.parts.clear();
truth_box.parts["top_left"] = truth_box.rect.tl_corner();
truth_box.parts["top_right"] = truth_box.rect.tr_corner();
truth_box.parts["bottom_left"] = truth_box.rect.bl_corner();
truth_box.parts["bottom_right"] = truth_box.rect.br_corner();
// Now replace the bounding truth_box with the detector's bounding truth_box.
truth_box.rect = det.first;
result.images[i].boxes.push_back(truth_box);
}
}
}
return result;
}
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
} }
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#ifdef DLIB_SHAPE_PREDICToR_TRAINER_ABSTRACT_H_ #ifdef DLIB_SHAPE_PREDICToR_TRAINER_ABSTRACT_H_
#include "shape_predictor_abstract.h" #include "shape_predictor_abstract.h"
#include "../data_io/image_dataset_metadata.h"
namespace dlib namespace dlib
{ {
...@@ -365,6 +366,43 @@ namespace dlib ...@@ -365,6 +366,43 @@ namespace dlib
!*/ !*/
}; };
// ----------------------------------------------------------------------------------------
template <
typename some_type_of_rectangle
>
image_dataset_metadata::dataset make_bounding_box_regression_training_data (
const image_dataset_metadata::dataset& truth,
const std::vector<std::vector<some_type_of_rectangle>>& detections
);
/*!
requires
- truth.images.size() == detections.size()
- some_type_of_rectangle == rectangle, drectangle, mmod_rect, or any other type
that is convertible to a rectangle.
ensures
- Suppose you have an object detector that can roughly locate objects in an
image. This means your detector draws boxes around objects, but these are
*rough* boxes in the sense that they aren't positioned super accurately. For
instance, HOG based detectors usually have a stride of 8 pixels. So the
positional accuracy is going to be, at best, +/-8 pixels.
If you want to get better positional accuracy one easy thing to do is train a
shape_predictor to give you the corners of the object. The
make_bounding_box_regression_training_data() routine helps you do this by
creating an appropriate training dataset. It does this by taking the dataset
you used to train your detector (the truth object), and combining that with
the output of your detector on each image in the training dataset (the
detections object). In particular, it will create a new annotated dataset
where each object box is one of the rectangles from detections and that
object has 4 part annotations, the corners of the truth rectangle
corresponding to that detection rectangle. You can then take the returned
dataset and train a shape_predictor on it. The resulting shape_predictor can
then be used to do bounding box regression.
- We assume that detections[i] contains object detections corresponding to
the image truth.images[i].
!*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment