Commit 0cedd073 authored by Davis King's avatar Davis King

updated docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403996
parent 7574804b
......@@ -922,7 +922,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<component>
<name>svm_nu_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
<spec_file link="true">dlib/svm/svm_nu_trainer_abstract.h</spec_file>
<description>
<p>
Trains a nu support vector classifier and outputs a <a href="#decision_function">decision_function</a>.
......
......@@ -31,6 +31,7 @@
<item>find_min_using_approximate_derivatives</item>
<item>find_min_bobyqa</item>
<item>solve_qp_using_smo</item>
<item>solve_qp2_using_smo</item>
<item>oca</item>
<item>find_max</item>
<item>find_max_single_variable</item>
......@@ -348,13 +349,43 @@ subject to the following constraint:
subject to the following constraints:
sum(alpha) == C
min(alpha) >= 0
Where f is convex. This means that Q should be positive-semidefinite.
Where f is convex. This means that Q should be symmetric and positive-semidefinite.
</pre>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>solve_qp2_using_smo</name>
<file>dlib/optimization.h</file>
<spec_file link="true">dlib/optimization/optimization_solve_qp2_using_smo_abstract.h</spec_file>
<description>
This function solves the following quadratic program:
<pre>
Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha
subject to the following constraints:
sum(alpha) == nu*y.size()
0 &lt;= min(alpha) &amp;&amp; max(alpha) &lt;= 1
trans(y)*alpha == 0
Where f is convex. This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
This object implements the strategy used by the LIBSVM tool. The following papers
can be consulted for additional details:
<ul>
<li>Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms</li>
<li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
</ul>
</description>
</component>
<!-- ************************************************************************* -->
<component>
......
......@@ -33,6 +33,9 @@
<term file="dlib/optimization/optimization_bobyqa_abstract.h.html" name="bobyqa_failure"/>
<term file="dlib/optimization/optimization_oca_abstract.h.html" name="oca_problem"/>
<term file="dlib/optimization/optimization_solve_qp2_using_smo_abstract.h.html" name="invalid_nu_error"/>
<term file="dlib/optimization/optimization_solve_qp2_using_smo_abstract.h.html" name="maximum_nu"/>
<term file="optimization.html" name="derivative"/>
<term file="optimization.html" name="make_line_search_function"/>
<term file="optimization.html" name="poly_min_extrap"/>
......@@ -48,6 +51,7 @@
<term file="optimization.html" name="find_min_using_approximate_derivatives"/>
<term file="optimization.html" name="find_min_bobyqa"/>
<term file="optimization.html" name="solve_qp_using_smo"/>
<term file="optimization.html" name="solve_qp2_using_smo"/>
<term file="optimization.html" name="oca"/>
<term link="optimization.html#find_min_bobyqa" name="BOBYQA"/>
<term file="optimization.html" name="find_max"/>
......@@ -195,7 +199,6 @@
<term file="ml.html" name="find_gamma_with_big_centroid_gap"/>
<term file="ml.html" name="compute_mean_squared_distance"/>
<term file="dlib/svm/feature_ranking_abstract.h.html" name="verbose_find_gamma_with_big_centroid_gap"/>
<term file="dlib/svm/svm_abstract.h.html" name="maximum_nu"/>
<term file="ml.html" name="null_trainer"/>
<term file="ml.html" name="null_trainer_type"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment