Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
0f9f0e77
Commit
0f9f0e77
authored
Dec 12, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Moved the point/vector rotation/transformation code into its own file.
parent
a30fa632
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
286 additions
and
247 deletions
+286
-247
geometry.h
dlib/geometry.h
+1
-0
point_transforms.h
dlib/geometry/point_transforms.h
+133
-0
point_transforms_abstract.h
dlib/geometry/point_transforms_abstract.h
+152
-0
vector.h
dlib/geometry/vector.h
+0
-113
vector_abstract.h
dlib/geometry/vector_abstract.h
+0
-134
No files found.
dlib/geometry.h
View file @
0f9f0e77
...
...
@@ -6,6 +6,7 @@
#include "geometry/rectangle.h"
#include "geometry/vector.h"
#include "geometry/border_enumerator.h"
#include "geometry/point_transforms.h"
#endif // DLIB_GEOMETRy_HEADER
...
...
dlib/geometry/point_transforms.h
0 → 100644
View file @
0f9f0e77
// Copyright (C) 2003 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_POINT_TrANSFORMS_H_
#define DLIB_POINT_TrANSFORMS_H_
#include "point_transforms_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "vector.h"
#include <vector>
namespace
dlib
{
// ----------------------------------------------------------------------------------------
class
point_rotator
{
public
:
point_rotator
(
const
double
&
angle
)
{
sin_angle
=
std
::
sin
(
angle
);
cos_angle
=
std
::
cos
(
angle
);
}
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
{
double
x
=
cos_angle
*
p
.
x
()
-
sin_angle
*
p
.
y
();
double
y
=
sin_angle
*
p
.
x
()
+
cos_angle
*
p
.
y
();
return
dlib
::
vector
<
double
,
2
>
(
x
,
y
);
}
private
:
double
sin_angle
;
double
cos_angle
;
};
// ----------------------------------------------------------------------------------------
class
point_transform
{
public
:
point_transform
(
const
double
&
angle
,
const
dlib
::
vector
<
double
,
2
>&
translate_
)
{
sin_angle
=
std
::
sin
(
angle
);
cos_angle
=
std
::
cos
(
angle
);
translate
=
translate_
;
}
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
{
double
x
=
cos_angle
*
p
.
x
()
-
sin_angle
*
p
.
y
();
double
y
=
sin_angle
*
p
.
x
()
+
cos_angle
*
p
.
y
();
return
dlib
::
vector
<
double
,
2
>
(
x
,
y
)
+
translate
;
}
private
:
double
sin_angle
;
double
cos_angle
;
dlib
::
vector
<
double
,
2
>
translate
;
};
// ----------------------------------------------------------------------------------------
class
point_transform_affine
{
public
:
point_transform_affine
(
const
matrix
<
double
,
2
,
2
>&
m_
,
const
dlib
::
vector
<
double
,
2
>&
b_
)
:
m
(
m_
),
b
(
b_
)
{
}
const
dlib
::
vector
<
double
,
2
>
operator
()
(
const
dlib
::
vector
<
double
,
2
>&
p
)
const
{
return
m
*
p
+
b
;
}
private
:
matrix
<
double
,
2
,
2
>
m
;
dlib
::
vector
<
double
,
2
>
b
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
rotate_point
(
const
dlib
::
vector
<
T
,
2
>&
center
,
const
dlib
::
vector
<
T
,
2
>&
p
,
double
angle
)
{
point_rotator
rot
(
angle
);
return
rot
(
p
-
center
)
+
center
;
}
// ----------------------------------------------------------------------------------------
inline
matrix
<
double
,
2
,
2
>
rotation_matrix
(
double
angle
)
{
const
double
ca
=
std
::
cos
(
angle
);
const
double
sa
=
std
::
sin
(
angle
);
matrix
<
double
,
2
,
2
>
m
;
m
=
ca
,
-
sa
,
sa
,
ca
;
return
m
;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POINT_TrANSFORMS_H_
dlib/geometry/point_transforms_abstract.h
0 → 100644
View file @
0f9f0e77
// Copyright (C) 2003 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_POINT_TrANSFORMS_ABSTRACT_H__
#ifdef DLIB_POINT_TrANSFORMS_ABSTRACT_H__
#include "../matrix/matrix_abstract.h"
#include "../vector_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
class
point_transform_affine
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
applies an affine transformation to them.
!*/
public
:
point_transform_affine
(
const
matrix
<
double
,
2
,
2
>&
m
,
const
dlib
::
vector
<
double
,
2
>&
b
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P == m*p + b
!*/
const
dlib
::
vector
<
double
,
2
>
operator
()
(
const
dlib
::
vector
<
double
,
2
>&
p
)
const
;
/*!
ensures
- applies the affine transformation defined by this object's constructor
to p and returns the result.
!*/
};
// ----------------------------------------------------------------------------------------
class
point_transform
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle and then
translates them.
!*/
public
:
point_transform
(
const
double
&
angle
,
const
dlib
::
vector
<
double
,
2
>&
translate
)
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians and then shifted by having translate added to it.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
;
/*!
ensures
- rotates p, then translates it and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
class
point_rotator
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle.
!*/
public
:
point_rotator
(
const
double
&
angle
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
;
/*!
ensures
- rotates p and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
rotate_point
(
const
dlib
::
vector
<
T
,
2
>
center
,
const
dlib
::
vector
<
T
,
2
>
p
,
double
angle
);
/*!
ensures
- returns a point P such that:
- P is the point p rotated counter-clockwise around the given
center point by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
// ----------------------------------------------------------------------------------------
matrix
<
double
,
2
,
2
>
rotation_matrix
(
double
angle
);
/*!
ensures
- returns a rotation matrix which rotates points around the origin in a
counter-clockwise direction by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
Or in other words, this function returns a matrix M such that, given a
point P, M*P gives a point which is P rotated by angle radians around
the origin in a counter-clockwise direction.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POINT_TrANSFORMS_ABSTRACT_H__
dlib/geometry/vector.h
View file @
0f9f0e77
...
...
@@ -1258,119 +1258,6 @@ namespace dlib
typedef
vector
<
long
,
2
>
point
;
// ----------------------------------------------------------------------------------------
class
point_rotator
{
public
:
point_rotator
(
const
double
&
angle
)
{
sin_angle
=
std
::
sin
(
angle
);
cos_angle
=
std
::
cos
(
angle
);
}
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
{
double
x
=
cos_angle
*
p
.
x
()
-
sin_angle
*
p
.
y
();
double
y
=
sin_angle
*
p
.
x
()
+
cos_angle
*
p
.
y
();
return
dlib
::
vector
<
double
,
2
>
(
x
,
y
);
}
private
:
double
sin_angle
;
double
cos_angle
;
};
// ----------------------------------------------------------------------------------------
class
point_transform
{
public
:
point_transform
(
const
double
&
angle
,
const
dlib
::
vector
<
double
,
2
>&
translate_
)
{
sin_angle
=
std
::
sin
(
angle
);
cos_angle
=
std
::
cos
(
angle
);
translate
=
translate_
;
}
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
{
double
x
=
cos_angle
*
p
.
x
()
-
sin_angle
*
p
.
y
();
double
y
=
sin_angle
*
p
.
x
()
+
cos_angle
*
p
.
y
();
return
dlib
::
vector
<
double
,
2
>
(
x
,
y
)
+
translate
;
}
private
:
double
sin_angle
;
double
cos_angle
;
dlib
::
vector
<
double
,
2
>
translate
;
};
// ----------------------------------------------------------------------------------------
class
point_transform_affine
{
public
:
point_transform_affine
(
const
matrix
<
double
,
2
,
2
>&
m_
,
const
dlib
::
vector
<
double
,
2
>&
b_
)
:
m
(
m_
),
b
(
b_
)
{
}
const
dlib
::
vector
<
double
,
2
>
operator
()
(
const
dlib
::
vector
<
double
,
2
>&
p
)
const
{
return
m
*
p
+
b
;
}
private
:
matrix
<
double
,
2
,
2
>
m
;
dlib
::
vector
<
double
,
2
>
b
;
};
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
rotate_point
(
const
dlib
::
vector
<
T
,
2
>&
center
,
const
dlib
::
vector
<
T
,
2
>&
p
,
double
angle
)
{
point_rotator
rot
(
angle
);
return
rot
(
p
-
center
)
+
center
;
}
// ----------------------------------------------------------------------------------------
inline
matrix
<
double
,
2
,
2
>
rotation_matrix
(
double
angle
)
{
const
double
ca
=
std
::
cos
(
angle
);
const
double
sa
=
std
::
sin
(
angle
);
matrix
<
double
,
2
,
2
>
m
;
m
=
ca
,
-
sa
,
sa
,
ca
;
return
m
;
}
// ----------------------------------------------------------------------------------------
}
...
...
dlib/geometry/vector_abstract.h
View file @
0f9f0e77
...
...
@@ -431,140 +431,6 @@ namespace dlib
typedef
vector
<
long
,
2
>
point
;
// ----------------------------------------------------------------------------------------
class
point_transform_affine
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
applies an affine transformation to them.
!*/
public
:
point_transform_affine
(
const
matrix
<
double
,
2
,
2
>&
m
,
const
dlib
::
vector
<
double
,
2
>&
b
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P == m*p + b
!*/
const
dlib
::
vector
<
double
,
2
>
operator
()
(
const
dlib
::
vector
<
double
,
2
>&
p
)
const
;
/*!
ensures
- applies the affine transformation defined by this object's constructor
to p and returns the result.
!*/
};
// ----------------------------------------------------------------------------------------
class
point_transform
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle and then
translates them.
!*/
public
:
point_transform
(
const
double
&
angle
,
const
dlib
::
vector
<
double
,
2
>&
translate
)
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians and then shifted by having translate added to it.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
;
/*!
ensures
- rotates p, then translates it and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
class
point_rotator
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle.
!*/
public
:
point_rotator
(
const
double
&
angle
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
operator
()
(
const
dlib
::
vector
<
T
,
2
>&
p
)
const
;
/*!
ensures
- rotates p and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
const
dlib
::
vector
<
T
,
2
>
rotate_point
(
const
dlib
::
vector
<
T
,
2
>
center
,
const
dlib
::
vector
<
T
,
2
>
p
,
double
angle
);
/*!
ensures
- returns a point P such that:
- P is the point p rotated counter-clockwise around the given
center point by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
// ----------------------------------------------------------------------------------------
matrix
<
double
,
2
,
2
>
rotation_matrix
(
double
angle
);
/*!
ensures
- returns a rotation matrix which rotates points around the origin in a
counter-clockwise direction by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
Or in other words, this function returns a matrix M such that, given a
point P, M*P gives a point which is P rotated by angle radians around
the origin in a counter-clockwise direction.
!*/
// ----------------------------------------------------------------------------------------
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment