Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
1727efea
Commit
1727efea
authored
Nov 05, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated docs
parent
655d3e1f
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
116 additions
and
7 deletions
+116
-7
ml.xml
docs/docs/ml.xml
+109
-7
term_index.xml
docs/docs/term_index.xml
+7
-0
No files found.
docs/docs/ml.xml
View file @
1727efea
...
...
@@ -118,13 +118,19 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>
structural_graph_labeling_trainer
</item>
</section>
<section>
<name>
Unsupervised
</name>
<name>
Unsupervised Clustering
</name>
<item>
kkmeans
</item>
<item>
find_clusters_using_kmeans
</item>
<item>
newman_cluster
</item>
<item>
chinese_whispers
</item>
<item>
modularity
</item>
</section>
<section>
<name>
Unsupervised Miscellaneous
</name>
<item>
kcentroid
</item>
<item>
linearly_independent_subset_finder
</item>
<item>
empirical_kernel_map
</item>
<item>
kkmeans
</item>
<item>
svm_one_class_trainer
</item>
<item>
find_clusters_using_kmeans
</item>
<item>
vector_normalizer
</item>
<item>
vector_normalizer_pca
</item>
<item>
sammon_projection
</item>
...
...
@@ -149,6 +155,9 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>
squared_euclidean_distance
</item>
<item>
use_weights_of_one
</item>
<item>
use_gaussian_weights
</item>
<item>
is_ordered_by_index
</item>
<item>
find_neighbor_ranges
</item>
<item>
convert_unordered_to_ordered
</item>
</sub>
</item>
</section>
...
...
@@ -342,6 +351,46 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
</component>
<!-- ************************************************************************* -->
<component>
<name>
is_ordered_by_index
</name>
<file>
dlib/manifold_regularization.h
</file>
<spec_file
link=
"true"
>
dlib/manifold_regularization/graph_creation_abstract.h
</spec_file>
<description>
This function checks if a vector of
<a
href=
"#sample_pair"
>
sample_pair
</a>
or
<a
href=
"#ordered_sample_pair"
>
ordered_sample_pair
</a>
objects is in sorted
order according to their index values.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
convert_unordered_to_ordered
</name>
<file>
dlib/manifold_regularization.h
</file>
<spec_file
link=
"true"
>
dlib/manifold_regularization/graph_creation_abstract.h
</spec_file>
<description>
This function takes a graph, defined by a vector of
<a
href=
"#sample_pair"
>
sample_pair
</a>
objects and converts it into the equivalent
graph defined by a vector of
<a
href=
"#ordered_sample_pair"
>
ordered_sample_pair
</a>
objects.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
find_neighbor_ranges
</name>
<file>
dlib/manifold_regularization.h
</file>
<spec_file
link=
"true"
>
dlib/manifold_regularization/graph_creation_abstract.h
</spec_file>
<description>
This function takes a graph, defined by a vector of
<a
href=
"#ordered_sample_pair"
>
ordered_sample_pair
</a>
objects, and finds the
ranges that contain the edges for each node in the graph. The output therefore
lets you easily locate the neighbors of any node in the graph.
</description>
</component>
<!-- ************************************************************************* -->
<component>
...
...
@@ -457,11 +506,64 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
</component>
<!-- ************************************************************************* -->
<component>
<name>
modularity
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/modularity_clustering_abstract.h
</spec_file>
<description>
This function computes the modularity of a particular graph clustering. This
is a number that tells you how good the clustering is. In particular, it
is the measure optimized by the
<a
href=
"#newman_cluster"
>
newman_cluster
</a>
routine.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
newman_cluster
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/modularity_clustering_abstract.h
</spec_file>
<description>
This function performs the clustering algorithm described in the paper
<blockquote>
Modularity and community structure in networks by M. E. J. Newman.
</blockquote>
In particular, this is a method for automatically clustering the nodes in a
graph into groups. The method is able to automatically determine the number
of clusters and does not have any parameters. In general, it is a very good
clustering technique.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
chinese_whispers
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/chinese_whispers_abstract.h
</spec_file>
<description>
This function performs the clustering algorithm described in the paper
<blockquote>
Chinese Whispers - an Efficient Graph Clustering Algorithm and its
Application to Natural Language Processing Problems by Chris Biemann.
</blockquote>
In particular, this is a method for automatically clustering the nodes in a
graph into groups. The method is able to automatically determine the number
of clusters.
<p>
It should be noted that this method is generally not going to work as
well as
<a
href=
"#newman_cluster"
>
Newman clustering
</a>
. However, Chinese
Whispers is very fast.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
find_clusters_using_kmeans
</name>
<file>
dlib/
svm
.h
</file>
<file>
dlib/
clustering
.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
This is just a simple linear kmeans clustering implementation.
...
...
@@ -473,7 +575,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<component>
<name>
pick_initial_centers
</name>
<file>
dlib/
svm
.h
</file>
<file>
dlib/
clustering
.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
This is a function that you can use to seed data clustering algorithms
...
...
@@ -641,7 +743,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<component>
<name>
kkmeans
</name>
<file>
dlib/
svm
.h
</file>
<file>
dlib/
clustering
.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
This is an implementation of a kernelized k-means clustering algorithm.
...
...
docs/docs/term_index.xml
View file @
1727efea
...
...
@@ -227,6 +227,9 @@
<term
file=
"ml.html"
name=
"find_k_nearest_neighbors"
/>
<term
file=
"ml.html"
name=
"remove_short_edges"
/>
<term
file=
"ml.html"
name=
"remove_duplicate_edges"
/>
<term
file=
"ml.html"
name=
"is_ordered_by_index"
/>
<term
file=
"ml.html"
name=
"convert_unordered_to_ordered"
/>
<term
file=
"ml.html"
name=
"find_neighbor_ranges"
/>
<term
file=
"ml.html"
name=
"remove_long_edges"
/>
<term
file=
"ml.html"
name=
"remove_percent_longest_edges"
/>
<term
file=
"ml.html"
name=
"remove_percent_shortest_edges"
/>
...
...
@@ -236,6 +239,7 @@
<term
link=
"dlib/manifold_regularization/graph_creation_abstract.h.html#max_index_plus_one"
name=
"for graphs"
/>
<term
link=
"dlib/svm/sparse_vector_abstract.h.html#max_index_plus_one"
name=
"for sparse vectors"
/>
</term>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"sparse_matrix_vector_multiply"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"add_to"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"subtract_from"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"assign"
/>
...
...
@@ -308,6 +312,9 @@
<term
file=
"dlib/statistics/dpca_abstract.h.html"
name=
"discriminant_pca_error"
/>
<term
file=
"ml.html"
name=
"kkmeans"
/>
<term
file=
"ml.html"
name=
"find_clusters_using_kmeans"
/>
<term
file=
"ml.html"
name=
"newman_cluster"
/>
<term
file=
"ml.html"
name=
"chinese_whispers"
/>
<term
file=
"ml.html"
name=
"modularity"
/>
<term
file=
"ml.html"
name=
"pick_initial_centers"
/>
<term
file=
"ml.html"
name=
"rank_features"
/>
<term
file=
"ml.html"
name=
"find_gamma_with_big_centroid_gap"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment