Commit 23785d53 authored by Avi Haiat's avatar Avi Haiat Committed by Davis E. King

Expose python binding for running multiple detectors at once (#328)

* Expose python binding for running multiple detectors at once

* Remove unwanted typedef
parent 764e9185
...@@ -340,6 +340,20 @@ ensures \n\ ...@@ -340,6 +340,20 @@ ensures \n\
detector. If you don't know how many times you want to upsample then \n\ detector. If you don't know how many times you want to upsample then \n\
don't provide a value for upsample_num_times and an appropriate \n\ don't provide a value for upsample_num_times and an appropriate \n\
default will be used.") default will be used.")
.def("run_multiple", run_multiple_rect_detectors,(arg("detectors"), arg("image"), arg("upsample_num_times")=0, arg("adjust_threshold")=0.0),
"requires \n\
- detectors is a list of detectors. \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
- upsample_num_times >= 0 \n\
ensures \n\
- This function runs the list of object detectors at once on the input image and returns \n\
a tuple of (list of detections, list of scores, list of weight_indices). \n\
- Upsamples the image upsample_num_times before running the basic \n\
detector. If you don't know how many times you want to upsample then \n\
don't provide a value for upsample_num_times and an appropriate \n\
default will be used.")
.staticmethod("run_multiple")
.def("save", save_simple_object_detector, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.") .def("save", save_simple_object_detector, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
.def_pickle(serialize_pickle<type>()); .def_pickle(serialize_pickle<type>());
} }
......
...@@ -113,6 +113,86 @@ namespace dlib ...@@ -113,6 +113,86 @@ namespace dlib
} }
} }
inline std::vector<dlib::rectangle> run_detectors_with_upscale1 (
std::vector<simple_object_detector >& detectors,
boost::python::object img,
const unsigned int upsampling_amount,
const double adjust_threshold,
std::vector<double>& detection_confidences,
std::vector<double>& weight_indices
)
{
pyramid_down<2> pyr;
std::vector<rectangle> rectangles;
std::vector<rect_detection> rect_detections;
if (is_gray_python_image(img))
{
array2d<unsigned char> temp;
if (upsampling_amount == 0)
{
evaluate_detectors(detectors, numpy_gray_image(img), rect_detections, adjust_threshold);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
else
{
pyramid_up(numpy_gray_image(img), temp, pyr);
unsigned int levels = upsampling_amount-1;
while (levels > 0)
{
levels--;
pyramid_up(temp);
}
evaluate_detectors(detectors, temp, rect_detections, adjust_threshold);
for (unsigned long i = 0; i < rect_detections.size(); ++i)
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
upsampling_amount);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
}
else if (is_rgb_python_image(img))
{
array2d<rgb_pixel> temp;
if (upsampling_amount == 0)
{
evaluate_detectors(detectors, numpy_rgb_image(img), rect_detections, adjust_threshold);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
else
{
pyramid_up(numpy_rgb_image(img), temp, pyr);
unsigned int levels = upsampling_amount-1;
while (levels > 0)
{
levels--;
pyramid_up(temp);
}
evaluate_detectors(detectors, temp, rect_detections, adjust_threshold);
for (unsigned long i = 0; i < rect_detections.size(); ++i)
rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
upsampling_amount);
split_rect_detections(rect_detections, rectangles,
detection_confidences, weight_indices);
return rectangles;
}
}
else
{
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}
}
inline std::vector<dlib::rectangle> run_detector_with_upscale2 ( inline std::vector<dlib::rectangle> run_detector_with_upscale2 (
dlib::simple_object_detector& detector, dlib::simple_object_detector& detector,
boost::python::object img, boost::python::object img,
...@@ -149,6 +229,36 @@ namespace dlib ...@@ -149,6 +229,36 @@ namespace dlib
detection_confidences, weight_indices); detection_confidences, weight_indices);
} }
inline boost::python::tuple run_multiple_rect_detectors (
boost::python::list& detectors,
boost::python::object img,
const unsigned int upsampling_amount,
const double adjust_threshold)
{
boost::python::tuple t;
std::vector<simple_object_detector > vector_detectors;
const unsigned long num_detectors = len(detectors);
// Now copy the data into dlib based objects.
for (unsigned long i = 0; i < num_detectors; ++i)
{
vector_detectors.push_back(boost::python::extract<simple_object_detector >(detectors[i]));
}
std::vector<double> detection_confidences;
std::vector<double> weight_indices;
std::vector<rectangle> rectangles;
rectangles = run_detectors_with_upscale1(vector_detectors, img, upsampling_amount,
adjust_threshold,
detection_confidences, weight_indices);
return boost::python::make_tuple(rectangles,
detection_confidences, weight_indices);
}
struct simple_object_detector_py struct simple_object_detector_py
{ {
simple_object_detector detector; simple_object_detector detector;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment