Commit 253cfe07 authored by Davis King's avatar Davis King

updated docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403782
parent 438b84b9
...@@ -117,8 +117,7 @@ ...@@ -117,8 +117,7 @@
<li><b>Machine Learning Algorithms</b> <li><b>Machine Learning Algorithms</b>
<ul> <ul>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li> <li>Conventional SMO based <a href="ml.html#svm_nu_trainer">Support vector machines</a> for classification</li>
<li><a href="ml.html#svm_nu_trainer">Support vector machines</a> for classification</li>
<li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a> <li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a>
and <a href="ml.html#krr_trainer">regression</a></li> and <a href="ml.html#krr_trainer">regression</a></li>
<li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a> <li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a>
...@@ -128,6 +127,7 @@ ...@@ -128,6 +127,7 @@
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector</li> <li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector</li>
<li>A kernelized <a href="ml.html#kkmeans">k-means</a> clustering algorithm</li> <li>A kernelized <a href="ml.html#kkmeans">k-means</a> clustering algorithm</li>
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li> <li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
</ul> </ul>
</li> </li>
......
...@@ -788,14 +788,18 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf" ...@@ -788,14 +788,18 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<p> <p>
Trains a <a href="#probabilistic_decision_function">probabilistic_decision_function</a> using Trains a <a href="#probabilistic_decision_function">probabilistic_decision_function</a> using
some sort of batch trainer object such as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or some sort of batch trainer object such as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or
<a href="#rbf_network_trainer">rbf_network_trainer</a>. <a href="#krr_trainer">krr_trainer</a>.
</p> </p>
The probability model is created by using the technique described in the paper: The probability model is created by using the technique described in the following papers:
<blockquote> <blockquote>
Probabilistic Outputs for Support Vector Machines and Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods by Comparisons to Regularized Likelihood Methods by
John C. Platt. March 26, 1999 John C. Platt. March 26, 1999
</blockquote> </blockquote>
<blockquote>
A Note on Platt's Probabilistic Outputs for Support Vector Machines
by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
</blockquote>
</description> </description>
<examples> <examples>
<example>svm_ex.cpp.html</example> <example>svm_ex.cpp.html</example>
...@@ -811,6 +815,9 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf" ...@@ -811,6 +815,9 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<spec_file link="true">dlib/svm/rbf_network_abstract.h</spec_file> <spec_file link="true">dlib/svm/rbf_network_abstract.h</spec_file>
<description> <description>
Trains a radial basis function network and outputs a <a href="#decision_function">decision_function</a>. Trains a radial basis function network and outputs a <a href="#decision_function">decision_function</a>.
It's worth pointing out that this object is essentially an unregularized version
of <a href="#krr_trainer">kernel ridge regression</a>. This means
you should really prefer to use kernel ridge regression instead.
</description> </description>
</component> </component>
......
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
<name>Strategies</name> <name>Strategies</name>
<item>cg_search_strategy</item> <item>cg_search_strategy</item>
<item>bfgs_search_strategy</item> <item>bfgs_search_strategy</item>
<item>newton_search_strategy</item>
<item>lbfgs_search_strategy</item> <item>lbfgs_search_strategy</item>
<item>objective_delta_stop_strategy</item> <item>objective_delta_stop_strategy</item>
<item>gradient_norm_stop_strategy</item> <item>gradient_norm_stop_strategy</item>
...@@ -199,6 +200,29 @@ ...@@ -199,6 +200,29 @@
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>newton_search_strategy</name>
<file>dlib/optimization.h</file>
<spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
<description>
This object represents a strategy for determining which direction
a <a href="#line_search">line search</a> should be carried out along. This particular routine
is an implementation of the newton method for determining this direction.
That means using it requires you to supply a method for
creating hessian matrices for the problem you are trying to optimize.
<p>
Note also that this is actually a helper function for creating
<a href="dlib/optimization/optimization_search_strategies_abstract.h.html#newton_search_strategy_obj"
>newton_search_strategy_obj</a> objects.
</p>
</description>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->
<component> <component>
......
...@@ -11,6 +11,35 @@ ...@@ -11,6 +11,35 @@
<!-- ******************************************************************************* --> <!-- ******************************************************************************* -->
<current> <current>
New Stuff:
- Added a reference_wrapper implementation and modified the thread_function
slightly so it works with it.
- Added an implementation of kernel ridge regression.
- Added a simple newton search strategy for optimizing functions.
Non-Backwards Compatible Changes:
- If you have created your own matrix expressions then its possible this
new release will cause them to not compile.
Bug fixes:
- Fixed a bug in scale_columns. It said it didn't have any destructive aliasing
when in fact it destructively aliased its second argument.
- Fixed a bug in the random number generator where setting the seed back to ""
didn't result in the object going back to it's initial state.
Other:
- Reorganized the matrix expression code. It's now much simpler and the
library includes a new example program which details the steps needed to
create new matrix expressions.
- Changed the train_probabilistic_decision_function() routine so that it uses
a more numerically stable method to perform its maximum likelihood optimization.
- Added missing get/set epsilon functions to the RVM training objects.
I also changed the default epsilon from 0.0005 to 0.001.
</current>
<!-- ******************************************************************************* -->
<old name="17.28" date="Jun 14, 2010">
New Stuff: New Stuff:
- Added the simplify_linear_decision_function() routines. - Added the simplify_linear_decision_function() routines.
- Added the find_approximate_k_nearest_neighbors() function. - Added the find_approximate_k_nearest_neighbors() function.
...@@ -33,7 +62,7 @@ Other: ...@@ -33,7 +62,7 @@ Other:
- Made the reduced() and reduced2() functions more efficient. - Made the reduced() and reduced2() functions more efficient.
- Many small usability improvements here and there. - Many small usability improvements here and there.
</current> </old>
<!-- ******************************************************************************* --> <!-- ******************************************************************************* -->
......
...@@ -54,6 +54,8 @@ ...@@ -54,6 +54,8 @@
<term file="optimization.html" name="negate_function"/> <term file="optimization.html" name="negate_function"/>
<term file="optimization.html" name="cg_search_strategy"/> <term file="optimization.html" name="cg_search_strategy"/>
<term file="optimization.html" name="bfgs_search_strategy"/> <term file="optimization.html" name="bfgs_search_strategy"/>
<term file="optimization.html" name="newton_search_strategy"/>
<term file="optimization.html" name="newton_search_strategy_obj"/>
<term file="optimization.html" name="lbfgs_search_strategy"/> <term file="optimization.html" name="lbfgs_search_strategy"/>
<term file="bayes.html" name="set_node_value"/> <term file="bayes.html" name="set_node_value"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment