Commit 253cfe07 authored by Davis King's avatar Davis King

updated docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403782
parent 438b84b9
......@@ -117,8 +117,7 @@
<li><b>Machine Learning Algorithms</b>
<ul>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
<li><a href="ml.html#svm_nu_trainer">Support vector machines</a> for classification</li>
<li>Conventional SMO based <a href="ml.html#svm_nu_trainer">Support vector machines</a> for classification</li>
<li>Reduced-rank methods for large-scale <a href="ml.html#svm_c_ekm_trainer">classification</a>
and <a href="ml.html#krr_trainer">regression</a></li>
<li>Relevance vector machines for <a href="ml.html#rvm_trainer">classification</a>
......@@ -128,6 +127,7 @@
<li>An online kernelized <a href="ml.html#kcentroid">centroid estimator</a>/novelty detector</li>
<li>A kernelized <a href="ml.html#kkmeans">k-means</a> clustering algorithm</li>
<li><a href="ml.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
<li><a href="ml.html#mlp">Multi layer perceptrons</a> </li>
</ul>
</li>
......
......@@ -788,14 +788,18 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<p>
Trains a <a href="#probabilistic_decision_function">probabilistic_decision_function</a> using
some sort of batch trainer object such as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or
<a href="#rbf_network_trainer">rbf_network_trainer</a>.
<a href="#krr_trainer">krr_trainer</a>.
</p>
The probability model is created by using the technique described in the paper:
The probability model is created by using the technique described in the following papers:
<blockquote>
Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods by
John C. Platt. March 26, 1999
</blockquote>
<blockquote>
A Note on Platt's Probabilistic Outputs for Support Vector Machines
by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
</blockquote>
</description>
<examples>
<example>svm_ex.cpp.html</example>
......@@ -811,6 +815,9 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<spec_file link="true">dlib/svm/rbf_network_abstract.h</spec_file>
<description>
Trains a radial basis function network and outputs a <a href="#decision_function">decision_function</a>.
It's worth pointing out that this object is essentially an unregularized version
of <a href="#krr_trainer">kernel ridge regression</a>. This means
you should really prefer to use kernel ridge regression instead.
</description>
</component>
......
......@@ -40,6 +40,7 @@
<name>Strategies</name>
<item>cg_search_strategy</item>
<item>bfgs_search_strategy</item>
<item>newton_search_strategy</item>
<item>lbfgs_search_strategy</item>
<item>objective_delta_stop_strategy</item>
<item>gradient_norm_stop_strategy</item>
......@@ -199,6 +200,29 @@
</component>
<!-- ************************************************************************* -->
<component>
<name>newton_search_strategy</name>
<file>dlib/optimization.h</file>
<spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
<description>
This object represents a strategy for determining which direction
a <a href="#line_search">line search</a> should be carried out along. This particular routine
is an implementation of the newton method for determining this direction.
That means using it requires you to supply a method for
creating hessian matrices for the problem you are trying to optimize.
<p>
Note also that this is actually a helper function for creating
<a href="dlib/optimization/optimization_search_strategies_abstract.h.html#newton_search_strategy_obj"
>newton_search_strategy_obj</a> objects.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
......
......@@ -11,6 +11,35 @@
<!-- ******************************************************************************* -->
<current>
New Stuff:
- Added a reference_wrapper implementation and modified the thread_function
slightly so it works with it.
- Added an implementation of kernel ridge regression.
- Added a simple newton search strategy for optimizing functions.
Non-Backwards Compatible Changes:
- If you have created your own matrix expressions then its possible this
new release will cause them to not compile.
Bug fixes:
- Fixed a bug in scale_columns. It said it didn't have any destructive aliasing
when in fact it destructively aliased its second argument.
- Fixed a bug in the random number generator where setting the seed back to ""
didn't result in the object going back to it's initial state.
Other:
- Reorganized the matrix expression code. It's now much simpler and the
library includes a new example program which details the steps needed to
create new matrix expressions.
- Changed the train_probabilistic_decision_function() routine so that it uses
a more numerically stable method to perform its maximum likelihood optimization.
- Added missing get/set epsilon functions to the RVM training objects.
I also changed the default epsilon from 0.0005 to 0.001.
</current>
<!-- ******************************************************************************* -->
<old name="17.28" date="Jun 14, 2010">
New Stuff:
- Added the simplify_linear_decision_function() routines.
- Added the find_approximate_k_nearest_neighbors() function.
......@@ -33,7 +62,7 @@ Other:
- Made the reduced() and reduced2() functions more efficient.
- Many small usability improvements here and there.
</current>
</old>
<!-- ******************************************************************************* -->
......
......@@ -54,6 +54,8 @@
<term file="optimization.html" name="negate_function"/>
<term file="optimization.html" name="cg_search_strategy"/>
<term file="optimization.html" name="bfgs_search_strategy"/>
<term file="optimization.html" name="newton_search_strategy"/>
<term file="optimization.html" name="newton_search_strategy_obj"/>
<term file="optimization.html" name="lbfgs_search_strategy"/>
<term file="bayes.html" name="set_node_value"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment