Commit 26dab733 authored by Davis King's avatar Davis King

Added create_max_margin_projection_hash()

parent f320932e
......@@ -8,6 +8,7 @@
#include "../matrix.h"
#include "../rand.h"
#include "../statistics.h"
#include "../svm.h"
#include <vector>
namespace dlib
......@@ -113,6 +114,87 @@ namespace dlib
return projection_hash(proj, offset);
}
// ----------------------------------------------------------------------------------------
template <
typename vector_type
>
projection_hash create_max_margin_projection_hash (
const vector_type& v,
const int bits,
const double C = 10
)
{
// make sure requires clause is not broken
DLIB_ASSERT(0 < bits && bits <= 32 &&
v.size() > 1,
"\t projection_hash create_max_margin_projection_hash()"
<< "\n\t Invalid arguments were given to this function."
<< "\n\t bits: " << bits
<< "\n\t v.size(): " << v.size()
);
#ifdef ENABLE_ASSERTS
for (unsigned long i = 0; i < v.size(); ++i)
{
DLIB_ASSERT(v[0].size() == v[i].size() && v[i].size() > 0 && is_col_vector(v[i]),
"\t projection_hash create_max_margin_projection_hash()"
<< "\n\t Invalid arguments were given to this function."
<< "\n\t m(0).size(): " << v[0].size()
<< "\n\t m("<<i<<").size(): " << v[i].size()
<< "\n\t is_col_vector(v["<<i<<"]): " << is_col_vector(v[i])
);
}
#endif
running_covariance<matrix<double> > rc;
for (unsigned long i = 0; i < v.size(); ++i)
rc.add(matrix_cast<double>(v[i]));
// compute a whitening matrix
matrix<double> whiten = trans(chol(pinv(rc.covariance())));
const matrix<double,0,1> meanval = whiten*rc.mean();
dlib::rand rnd;
typedef matrix<double,0,1> sample_type;
random_subset_selector<sample_type> training_samples;
random_subset_selector<double> training_labels;
// We set this up to use enough samples to cover the vector space used by elements
// of v.
training_samples.set_max_size(v[0].size()*10);
training_labels.set_max_size(v[0].size()*10);
matrix<double> proj(bits, v[0].size());
matrix<double,0,1> offset(bits);
// learn the random planes and put them into proj and offset.
for (int itr = 0; itr < offset.size(); ++itr)
{
training_samples.make_empty();
training_labels.make_empty();
// pick random training data and give each sample a random label.
for (unsigned long i = 0; i < v.size(); ++i)
{
training_samples.add(whiten*v[i]-meanval);
if (rnd.get_random_double() > 0.5)
training_labels.add(+1);
else
training_labels.add(-1);
}
svm_c_linear_dcd_trainer<linear_kernel<sample_type> > trainer;
trainer.set_c(C);
decision_function<linear_kernel<sample_type> > df = trainer.train(training_samples, training_labels);
offset(itr) = -df.b;
set_rowm(proj,itr) = trans(df.basis_vectors(0));
}
return projection_hash(proj*whiten, offset-proj*meanval);
}
// ----------------------------------------------------------------------------------------
}
......
......@@ -35,7 +35,43 @@ namespace dlib
- H.num_hash_bins() == pow(2,bits)
- H will be setup so that it hashes the contents of v such that
each bin ends up with roughly the same number of elements
in it.
in it. This is accomplished by picking random hyperplanes
passing though the data.
!*/
// ----------------------------------------------------------------------------------------
template <
typename vector_type
>
projection_hash create_max_margin_projection_hash (
const vector_type& v,
const int bits,
const double C = 10
);
/*!
requires
- 0 < bits <= 32
- v.size() > 1
- vector_type == a std::vector or compatible type containing dlib::matrix
objects, each representing a column vector of the same size.
- for all valid i, j:
- is_col_vector(v[i]) == true
- v[i].size() > 0
- v[i].size() == v[j].size()
- i.e. v contains only column vectors and all the column vectors
have the same non-zero length
ensures
- returns a hash function H such that:
- H.num_hash_bins() == pow(2,bits)
- H will be setup so that it hashes the contents of v such that
each bin ends up with roughly the same number of elements
in it. This is accomplished using a variation on the random hyperplane
generation technique from the paper:
Random Maximum Margin Hashing by Alexis Joly and Olivier Buisson
In particular, we use the svm_c_linear_dcd_trainer to generate planes.
We train it on randomly selected and randomly labeled points from v.
The C SVM parameter is set to the given C argument.
!*/
// ----------------------------------------------------------------------------------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment